Skip to main content
Log in

NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils

  • SPECTRO-MICROSCOPIC CHARACTERIZATION OF BIOGEOCHEMICAL INTERFACES IN SOIL
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Secondary ion mass spectrometry at the nanoscale (NanoSIMS) is a new and promising technique in soil science, as it allows us to explore the elemental and isotopic composition of a solid sample with high sensitivity at a submicron scale. In this study, we demonstrate that it is possible to differentiate the major components of soils by this technique.

Materials and methods

For this purpose, we employed samples from incubated mixtures of soil components of known composition (clay minerals, Fe oxide, organic material, and quartz), so-called artificial soils. Samples were prepared from particle size and density fractions of soils of various compositions and investigated with reflected light and electron microscopy in combination with energy dispersive X-ray spectroscopy prior to NanoSIMS analysis.

Results and discussion

Our results show that we were able to show the submicron arrangement of the various components and to differentiate between charcoal and soil organic matter. Attachment of organic material to mineral surfaces was predominantly found to occur in patchy structures on the clay minerals, whereas only little sorption of homogeneously distributed organic material onto Fe oxides occurred. Although there are several reasons conceivable why we did not detect more sorption of organic matter to Fe oxides, it is likely that this is caused by the neutral pH of the soils, hampering sorption to the variable-charged surface sites of the Fe oxide.

Conclusions

Consequently, NanoSIMS enables the analysis of submicron processes in soil science-related research. However, the very heterogeneous matrix of soil particles leading to various ionization rates will make attempts for a quantitative analysis difficult, which is also due to a lack in the availability of suitable standards representing these complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexis MA, Rumpel C, Knicker H, Leifeld J, Rasse D, Péchot N, Bardoux G, Mariotti A (2010) Thermal alteration of organic matter during a shrubland fire: a field study. Org Geochem 41:690–697

    Article  CAS  Google Scholar 

  • Becker JS, Dietze H-J (2000) Inorganic mass spectrometric methods for trace, ultratrace, isotope, and surface analysis. Int J Mass Spectrom 197:3–35

    Google Scholar 

  • Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74

    Article  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Burchill S, Hayes MHB, Greenland DJ (1981) Adsorption. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil processes. Wiley, Chichester, pp 221–400

    Google Scholar 

  • Chenu C, Plante AF (2006) Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “primary organo-mineral complex”. Eur J Soil Sci 57:596–607

    Article  Google Scholar 

  • Clode PL, Stern RA, Marshall AT (2007) Subcellular imaging of isotopically labeled carbon compounds in a biological sample by ion microprobe (NanoSIMS). Microsc Res Tech 70:220–229

    Article  CAS  Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB III, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Article  CAS  Google Scholar 

  • Düsterhöft H, Riedel M, Düsterhöft B-K (1999) Einführung in die Sekundärionenmassenspektrometrie “SIMS”. Teubner, Stuttgart

    Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56:753–763

    CAS  Google Scholar 

  • Floss C, Stadermann FJ, Bradley JP, Dai ZR, Bajt S, Graham G, Lea AS (2006) Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim Cosmochim Acta 70:2371–2399

    Article  CAS  Google Scholar 

  • Ghosal S, Fallon SJ, Leighton TJ, Wheeler KE, Kristo MJ, Hutcheon ID, Weber PK (2008) Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. Anal Chem 80:5986–5992

    Article  CAS  Google Scholar 

  • Guerquin-Kern J-L, Wu T-D, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228–238

    Article  CAS  Google Scholar 

  • Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O'Donnell AG, Murphy DV (2007a) A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Spectrom 21:29–34

    Article  CAS  Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O'Donnell AG, Stockdale EA (2007b) Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39:1835–1850

    Article  CAS  Google Scholar 

  • Hiemstra T, Antelo J, Rahnemaie R, van Riemsdijk WH (2010) Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples. Geochim Cosmochim Acta 74:41–58

    Article  CAS  Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342

    Article  CAS  Google Scholar 

  • Ireland TR (2004) SIMS measurements of stable isotopes. In: de Groot PA (ed) Handbook of stable isotope analytical techniques. Elsevier, Amsterdam, pp 652–691

    Google Scholar 

  • Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725

    CAS  Google Scholar 

  • Kögel-Knabner I, Heister K, Mueller CW, Hillion F (2010) Elucidating soil structural associations of organic material with nano-scale secondary ion mass spectrometry (NanoSIMS). In: Gilkes RJ, Prakongkep N (eds) Proceedings of the 19th World Congress of Soil Science - soil solutions for a changing world. IUSS, Brisbane, pp 37–40

  • Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5:20

    Article  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Li T, Wu T-D, Mazéas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lozano-Perez S, Schröder M, Yamada T, Terachi T, English CA, Grovenor CRM (2008) Using NanoSIMS to map trace elements in stainless steels from nuclear reactors. Appl Surf Sci 255:1541–1543

    Article  CAS  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    Article  CAS  Google Scholar 

  • McMahon G, Saint-Cyr HF, Lechene C (2006a) CN secondary ions form by recombination as demonstrated using multi-isotope mass spectrometry of 13C- and 15N-labeled polyglycine. J Am Soc Mass Spectrom 17:1181–1187

    Article  CAS  Google Scholar 

  • McMahon G, Glassner BJ, Lechene CP (2006b) Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)—nanoautography with stable isotope tracers. Appl Surf Sci 252:6895–6906

    Article  CAS  Google Scholar 

  • Messenger S, Keller LP, Stadermann FJ, Walker RM, Zinner E (2003) Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300:105–108

    Article  CAS  Google Scholar 

  • Nocentini C, Certini G, Knicker H, Francioso O, Rumpel C (2010) Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Org Geochem 41:682–689

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 89–160

    Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Peteranderl R, Lechene C (2004) Measure of carbon and nitrogen stable isotope ratios in cultured cells. J Am Soc Mass Spectrom 15:478–485

    Article  CAS  Google Scholar 

  • Riciputi LR, Paterson BA, Ripperdan RL (1998) Measurement of light stable isotope ratios by SIMS: matrix effects for oxygen, carbon, and sulfur isotopes in minerals. Int J Mass Spectrom 178:81–112

    Article  CAS  Google Scholar 

  • Sano Y, Shirai K, Takahata N, Hirata T, Sturchio NC (2005) Nano-SIMS analysis of Mg, Sr, Ba and U in natural calcium carbonate. Anal Sci 21:1091–1097

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycles 14:777–793

    Article  CAS  Google Scholar 

  • Schwertmann U, Fechter H (1982) The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Miner 17:471–476

    Article  CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 379–438

    Google Scholar 

  • Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel H-J (2010) Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci 173:88–99

    Article  CAS  Google Scholar 

  • Trüby P, Aldinger E (1989) Eine Methode zur Bestimmung austauschbarer Kationen in Waldböden. J Plant Nutr Soil Sci 152:301–306

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 71:25–35

    Article  CAS  Google Scholar 

  • Weber PK, Graham GA, Teslich NE, Moberly Chan W, Ghosal S, Leighton TJ, Wheeler KE (2010) NanoSIMS imaging of Bacillus spores sectioned by focused ion beam. J Microsc 238:189–199

    Article  CAS  Google Scholar 

  • Winterholler B, Hoppe P, Foley S, Andreae MO (2008) Sulfur isotope ratio measurements of individual sulfate particles by NanoSIMS. Int J Mass Spectrom 272:63–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maria Greiner, Zohre Javaheri, Zahra Kazemi, Ulrike Maul, and Samira Ravash for the laboratory work related to the artificial soils. Moreover, we are grateful to Dr. Marianne Hanzlik (Institute of Electron Microscopy, Technische Universität München, Garching) for the assistance in SEM-EDX measurements. Funding from the German Research Foundation (DFG) is acknowledged for the NanoSIMS instrument (KO 1035/38-1) and the artificial soil experiment that was funded within the framework of the SPP1315 “Biogeochemical Interfaces in Soil” (KO 1035/33-1). Finally, we thank two anonymous reviewers for their helpful comments which improved the quality of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Heister.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7898 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heister, K., Höschen, C., Pronk, G.J. et al. NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. J Soils Sediments 12, 35–47 (2012). https://doi.org/10.1007/s11368-011-0386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0386-8

Keywords

Navigation