Skip to main content
Log in

Potential of AFM–nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM)

  • SPECTRO-MICROSCOPIC CHARACTERIZATION OF BIOGEOCHEMICAL INTERFACES IN SOIL
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2011

Abstract

Purpose

This exploratory study evaluates the potential of nanothermal analysis (nTA) coupled with atomic force microscopy (AFM) of soil samples for understanding physicochemical processes in soil and for linking the nanospatial and microspatial distribution of thermal characteristics with the macroscopic properties of soil samples.

Materials and methods

Soil and reference samples were investigated by differential scanning calorimetry and AFM-nTA. nTA was conducted on 16 points of each AFM image in two subsequent heating cycles (55–120°C and 55–300°C, respectively). Thermograms were subdivided into characteristic types and their spatial distribution was compared between sample replicates and materials.

Results and discussion

Thermogram types consisted of partly structured expansion and compression phases, suggesting material-specific thermal profiles. The distribution of thermogram types reflected sample-dependent nanoscale and microscale heterogeneity. Indications for water molecule bridge transitions were found by nTA in peat and soil. Organic materials generally revealed strong expansion and irreversible compression phases, latter probably due to the collapse of pore and aggregate structures. In contrast to charcoal and manure, peat shows strong expansion below 120°C and compression only above 120°C.

Conclusions

All investigated samples are heterogeneous on the nanoscale and microscale with respect to thermal behaviour. AFM-nTA allows distinguishing numerous different materials on nanometre and micrometre scales in soil samples. The material-dependent characteristics will help in understanding and learning more about the nanoscale distribution of different materials and properties. Related to the macroscopic thermal behaviour, this will allow studying links between the properties of biogeochemical interfaces and the processes governed by them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AFM-nTA:

Atomic force microscopy coupled with nanothermal analysis

α :

Apparent expansion coefficient

DSC:

Differential scanning calorimetry

EDX:

Energy-dispersive X-ray spectroscope (respective spectroscopy)

ESEM:

Environmental scanning electron microscope (respective microscopy)

κ :

Apparent compression coefficient

L-TMA:

Localized thermomechanical analysis

NMR:

Nuclear magnetic resonance

nTA:

Nanothermal analysis

ROI:

Region of interest

SOM:

Soil organic matter

TGA:

Thermogravimetric analysis

T g :

Glass transition temperature

T*:

WaMB transition temperature

TMA:

Thermomechanical analysis

WaMB:

Water molecule bridge

References

  • Aquino A, Tunega D, Pasalić H, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H (2011) Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids. Environ Sci Technol 45(19):8411–8419

    Article  CAS  Google Scholar 

  • Aquino AJA, Tunega D, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H (2009) Stabilizing capacity of water bridges in nanopore segments of humic substances: a theoretical investigation. J Phys Chem C 113:16468–16475

    Article  CAS  Google Scholar 

  • Bikiaris DN, Karayannidis GP (1996) Thermomechanical analysis of chain-extended PET and PBT. J Appl Polym Sci 60(1):55–61

    Article  CAS  Google Scholar 

  • Chiou CH, Chang SJ, Lee GB, Lee HH (2006) New fabrication process for monolithic probes with entegrated heaters for nanothermal machining. Jpnn J Appl Phy Part 1—Regular Papers Brief Communications & Review Papers 45(1):208–214

    CAS  Google Scholar 

  • Dai X, Reading M, Craig DQM (2009) Mapping amorphous material on a partially crystalline surface: nanothermal analysis for simultaneous characterisation and imaging of lactose compacts. J Pharm Sci 98(4):1499–1510

    Article  CAS  Google Scholar 

  • DeLapp RC, LeBoeuf EJ (2004) Thermal analysis of whole soils and sediment. J Environ Qual 33(1):330–337

    CAS  Google Scholar 

  • Dell'Abate MT, Benedetti A, Brookes PC (2003) Hyphenated techniques of thermal analysis for characterisation of soil humic substances. J Sep Sci 26(5):433–440

    Article  Google Scholar 

  • Dell'Abate MT, Benedetti A, Sequi P (2000) Thermal methods of organic matter maturation monitoring during a composting process. J Therm Anal Calorim 61(2):389–396

    Article  Google Scholar 

  • Frost RL, Ding Z (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta 397(1–2):119–128

    Article  CAS  Google Scholar 

  • Grim RE, Rowland RA (1942a) Differential thermal analysis of clay minerals and other hydrous materials. Part 1. Ceram Abstracts 27:746–761

    CAS  Google Scholar 

  • Grim RE, Rowland RA (1942b) Differential thermal analysis of clay minerals and other hydrous materials. Part 2. Ceram Abstracts 27:801–818

    Google Scholar 

  • Hu W-G, Mao J, Xing B, Schmidt-Rohr K (2000) Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ Sci Technol 34:530–534

    Article  CAS  Google Scholar 

  • Hammiche A, Reading M, Pollock HM, Song M, Hourston DJ (1996) Localized thermal analysis using a miniaturized resistive probe. Rev Sci Instrum 67(12):4268–4274

    Article  CAS  Google Scholar 

  • Harding L, King WP, Dai X, Craig DQM, Reading M (2007) Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. Pharm Res 24(11):2048–2054

    Article  CAS  Google Scholar 

  • Henderson JB, Emmerich WD (1991) Polymer characterization using thermomechanical analysis. J Therm Anal 37(8):1825–1831

    Article  CAS  Google Scholar 

  • Höhne GWH, Hemminger W, Flammersheim H-J (1996) Differential scanning calorimetry. An introduction for practitioners. Springer, Berlin

    Google Scholar 

  • Hurraß J, Schaumann GE (2007) Influence of the sample history and the moisture status on the thermal behavior of soil organic matter. Geochim Cosmochim Acta 71:691–702

    Article  Google Scholar 

  • Hurrass J, Schaumann GE (2005) Is glassiness a common characteristic of soil organic matter? Environ Sci Technol 39(24):9534–9540

    Article  CAS  Google Scholar 

  • Jaeger A, Schaumann GE, Bertmer M (2011) Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Org Geochem 42(8):917–925

    Article  CAS  Google Scholar 

  • Jaeger F, Shchegolikhina A, van As H, Schaumann GE (2010) Proton NMR relaxometry as a useful tol to evaluate swelling processes in peat soils. The Open Magnetic Resonance Journal 3:27–45

    Article  CAS  Google Scholar 

  • Keinath SE, Boyer RF (1981) Thermomechanical analysis of T g and T > T g transitions in polystyrene. J Appl Polym Sci 26(6):2077–2085

    Article  CAS  Google Scholar 

  • King WP, Saxena S, Nelson BA, Weeks BL, Pitchimani R (2006) Nanoscale thermal analysis of an energetic material. Nano Lett 6(9):2145–2149

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Ding G-C, Heister K, Pronk GJ, Schaumann GE, Schloter M, Schulz S, Schwarz J, Smalla K (2010) Formation of biogeochemical interfaces in soils as controlled by mineral and organic components. 19th World Congress of Soil Science (WCSS) Brisbane, 1–6 August 2010, pp 74–77

  • Kucerik J, Kislinger J, Majzlik P, Pekar M (2009) Correlation of humic substances chemical properties and their thermo-oxidative degradation kinetics. J Therm Anal Calorim 98(1):207–214

    Article  CAS  Google Scholar 

  • Larsen JW (1988) Macromolecular structure and coal pyrolysis. Fuel Process Technol 20:13–22

    Article  CAS  Google Scholar 

  • LeBoeuf EJ, Weber WJ (2000) Macromolecular characteristics of natural organic matter. 1. Insights from glass transition and enthalpic relaxation behavior. Environ Sci Technol 34(17):3623–3631

    Article  CAS  Google Scholar 

  • Lee BJ, Chen YB, Zhang ZM (2008) Confinement of infrared radiation to nanometer scales through metallic slit arrays. J Quant Spectrosc Ra 109(4):608–619

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten HR, Horte C (1992) Differential thermal-analysis, thermogravimetry and pyrolysis field-ionization mass-spectrometry of soil organic-matter in particle-size fractions and bulk soil samples. Thermochimica Acta 194:175–187

    Article  CAS  Google Scholar 

  • Lucht LM, Larson JM, Peppas NA (1987) Macromolecular structure of coals. 9. Molecular structure and glass transition temperature. Energ Fuel 1:56–58

    Article  CAS  Google Scholar 

  • Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorovere J, Chadwick OA, Guggenberger G (2009) Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochimica Et Cosmochimica Acta 73(7):2034–2060

    Article  CAS  Google Scholar 

  • Nelson BA, King WP (2007) Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev Sci Instrum 78(2):023702

    Article  CAS  Google Scholar 

  • Ng TH, Williams HL (1981) Thermomechanical analysis of linear aromatic polyesters. Makromolekulare Chemie 182(11):3323–3330

    Article  CAS  Google Scholar 

  • O'Neal HR, Welch S, Rogers J, Guilford S, Curran G, Menard KP (1995) Comparison of T g values for a graphite epoxy composite by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical analysis (DMA). J Adv Mater 26(3):49–54

    Google Scholar 

  • Plante AF, Fernández JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153(1–2):1–10

    Article  CAS  Google Scholar 

  • Provenzano MR, Ouatmane A, Hafidi M, Senesi N (2000) Differential scanning calorimetric analysis of composted materials from different sources. J Therm Anal Calorim 61(2):607–614

    Article  CAS  Google Scholar 

  • Schaumann GE (2005) Matrix relaxation and change of water state during hydration of peat. Colloid Surface A 265(1–3):163–170

    Article  CAS  Google Scholar 

  • Schaumann GE, Bertmer M (2008) Do water molecules bridge soil organic matter molecule segments? Eur J Soil Sci 59(3):423–429

    Article  CAS  Google Scholar 

  • Schaumann GE, LeBoeuf EJ (2005) Glass transitions in peat—their relevance and the impact of water. Environ Sci Technol 39(3):800–806

    Article  CAS  Google Scholar 

  • Schaumann GE, LeBoeuf EJ, DeLapp RC, Hurraß J (2005) Thermomechanical analysis of air-dried whole soil samples. Thermochimica Acta 436(1–2):83–89

    Article  CAS  Google Scholar 

  • Schaumann GE, Thiele-Bruhn S (2011) Molecular modelling of soil organic matter: squaring the circle? Geoderma 166(1):1–14

    Article  CAS  Google Scholar 

  • Siewert C (2004) Rapid screening of soil properties using thermogravimetry. Soil Sci Soc Am J 68:1656–1661

    Article  CAS  Google Scholar 

  • Young KD, LeBoeuf EJ (2000) Glass transition behavior in a peat humic acid and an aquatic fulvic acid. Environ Sci Technol 34(21):4549–4553

    Article  CAS  Google Scholar 

  • Zhang J, Bunker M, Parker A, Madden-Smith CE, Patel N, Roberts CJ (2011) The stability of solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis. Int J Pharm 414(1–2):210–217

    Article  CAS  Google Scholar 

  • Zhang JX, Bunker M, Chen XY, Parker AP, Patel N, Roberts CJ (2009) Nanoscale thermal analysis of pharmaceutical solid dispersions. Int J Pharm 380(1–2):170–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Deutsche Forschungsgemeinschaft, Project SCHA849/8 within the priority programme SPP 1315 Biogeochemical Interfaces in Soil. We also thank Dr. Jiri Kucerik for assistance in obtaining the ESEM pictures, Dr. Jette Schwarz for the DSC measurements and Ms. Priya Mary Abraham for assistance at AFM measurements and all of them for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Ellen Schaumann.

Additional information

Responsible editor: Michael Kersten

An erratum to this article can be found at http://dx.doi.org/10.1007/s11368-011-0459-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaumann, G.E., Kunhi Mouvenchery, Y. Potential of AFM–nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM). J Soils Sediments 12, 48–62 (2012). https://doi.org/10.1007/s11368-011-0443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-011-0443-3

Keywords

Navigation