Skip to main content

Advertisement

Log in

Feasibility of optimized ultralow-dose pulsed fluoroscopy for upper gastrointestinal tract examinations: a phantom study with clinical correlation

  • ABDOMINAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To establish an optimized ultralow-dose digital pulsed fluoroscopy (FP) protocol for upper gastrointestinal tract examinations and to investigate the radiation dose and image quality.

Materials and methods

An Alderson-Rando-Phantom with 60 thermoluminescent dosimeters was used for dose measurements to systematically evaluate the dose–area product (DAP) and organ doses of the optimized FP protocol with the following acquisition parameters: 86.7 kV; 77 mA; 0.9 mm3, automatic image noise and contrast adaption. Subjective image quality, depiction of contrast agent and image noise (5-point Likert scale; 5 = excellent) were assessed in 41 patients, who underwent contrast-enhanced FP with the aforementioned optimized protocol by two radiologists in consensus. A conventional digital radiograph (DR) acquisition protocol served as the reference standard for radiation dose and image quality analyses.

Results

Phantom measurements revealed a general dose reduction of approximately 96% per image for the FP protocol as compared to the DR standard. DAP could be reduced by 97%. Significant dose reductions were also found for organ doses, both in the direct and scattered radiation beam with negligible orbital (FP 5.6 × 10−3 vs. DR 0.11; p = 0.02) and gonadal dose exposure (female FP 2.4 × 10−3 vs. DR 0.05; male FP 8 × 10−4 vs. DR 0.03; p ≤ 0.0004). FP provided diagnostic image quality in all patients, although reading scores were significantly lower for all evaluated parameters as compared to the DR standard (p < 0.05).

Conclusion

Ultralow-dose FP is feasible for clinical routine allowing a significant reduction of direct and scattered dose exposure while providing sufficient diagnostic image quality for reliable diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Emigh B, Gordon CL, Connolly BL, Falkiner M, Thomas KE (2013) Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology. Pediatr Radiol 43:1108–1116

    Article  PubMed  Google Scholar 

  2. Chandler RC, Srinivas G, Chintapalli KN, Schwesinger WH, Prasad SR (2008) Imaging in bariatric surgery: a guide to postsurgical anatomy and common complications. AJR Am J Roentgenol 190:122–135

    Article  PubMed  Google Scholar 

  3. Kulinna-Cosentini C, Schima W, Ba-Ssalamah A, Cosentini EP (2014) MRI patterns of Nissen fundoplication: normal appearance and mechanisms of failure. Eur Radiol 24:2137–2145

    Article  PubMed  Google Scholar 

  4. Bingham J, Shawhan R, Parker R, Wigboldy J, Sohn V (2015) Computed tomography scan versus upper gastrointestinal fluoroscopy for diagnosis of staple line leak following bariatric surgery. Am J Surg 209:810–814 discussion 814

    Article  PubMed  Google Scholar 

  5. Margulis AR (1994) The present status and the future of gastrointestinal radiology. Abdom Imaging 19:291–292

    Article  CAS  PubMed  Google Scholar 

  6. Pauli EM, Beshir H, Mathew A (2014) Gastrogastric fistulae following gastric bypass surgery-clinical recognition and treatment. Curr Gastroenterol Rep 16:405

    Article  PubMed  Google Scholar 

  7. Harmath C, Horowitz J, Berggruen S, Hammond NA, Nikolaidis P, Miller FH et al (2015) Fluoroscopic findings post-peroral esophageal myotomy. Abdom Imaging 40:237–245

    Article  PubMed  Google Scholar 

  8. Levine MS, Carucci LR (2014) Imaging of bariatric surgery: normal anatomy and postoperative complications. Radiology 270:327–341

    Article  PubMed  Google Scholar 

  9. LeBedis CA, Penn DR, Uyeda JW, Murakami AM, Soto JA, Gupta A (2013) The diagnostic and therapeutic role of imaging in postoperative complications of esophageal surgery. Semin Ultrasound CT MR 34:288–298

    Article  PubMed  Google Scholar 

  10. Glennie D, Connolly BL, Gordon C (2008) Entrance skin dose measured with MOSFETs in children undergoing interventional radiology procedures. Pediatr Radiol 38:1180–1187

    Article  PubMed  Google Scholar 

  11. Miksys N, Gordon CL, Thomas K, Connolly BL (2010) Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters. AJR Am J Roentgenol 194:1315–1322

    Article  PubMed  Google Scholar 

  12. Lee R, Thomas KE, Connolly BL, Falkiner M, Gordon CL (2009) Effective dose estimation for pediatric voiding cystourethrography using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology. Pediatr Radiol 39:608–615

    Article  PubMed  Google Scholar 

  13. Linke SY, Tsiflikas I, Herz K, Szavay P, Gatidis S, Schafer JF (2015) Ultra low-dose VCUG in children using a modern flat detectorunit. Eur Radiol 26:1678–1685

    Article  PubMed  Google Scholar 

  14. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamiya K, Ozasa K, Akiba S, Niwa O, Kodama K, Takamura N et al (2015) Long-term effects of radiation exposure on health. Lancet 386:469–478

    Article  CAS  PubMed  Google Scholar 

  16. Axelsson B, Boden K, Fransson SG, Hansson IB, Persliden J, Witt HH (2000) A comparison of analogue and digital techniques in upper gastrointestinal examinations: absorbed dose and diagnostic quality of the images. Eur Radiol 10:1351–1354

    Article  CAS  PubMed  Google Scholar 

  17. Chawla S, Levine MS, Laufer I, Gingold EL, Kelly TJ, Langlotz CP (1999) Gastrointestinal imaging: a systems analysis comparing digital and conventional techniques. AJR Am J Roentgenol 172:1279–1284

    Article  CAS  PubMed  Google Scholar 

  18. Goodman BS, Carnel CT, Mallempati S, Agarwal P (2011) Reduction in average fluoroscopic exposure times for interventional spinal procedures through the use of pulsed and low-dose image settings. Am J Phys Med Rehabil 90:908–912

    Article  PubMed  Google Scholar 

  19. Barkhof F, David E, de Geest F (1996) Comparison of film-screen combination and digital fluorography in gastrointestinal barium examinations in a clinical setting. Eur J Radiol 22:232–235

    Article  CAS  PubMed  Google Scholar 

  20. Mahesh M (2001) Fluoroscopy: patient radiation exposure issues. Radiographics 21:1033–1045

    Article  CAS  PubMed  Google Scholar 

  21. Lin PJ (2008) Technical advances of interventional fluoroscopy and flat panel image receptor. Health Phys 95:650–657

    Article  CAS  PubMed  Google Scholar 

  22. Chau KH, Kung CM (2009) Patient dose during videofluoroscopy swallowing studies in a Hong Kong public hospital. Dysphagia 24:387–390

    Article  PubMed  Google Scholar 

  23. Schubert R (1995) What is dose area product? Radiol Technol 66:329–330

    CAS  PubMed  Google Scholar 

  24. Staton RJ, Williams JL, Arreola MM, Hintenlang DE, Bolch WE (2007) Organ and effective doses in infants undergoing upper gastrointestinal (UGI) fluoroscopic examination. Med Phys 34:703–710

    Article  PubMed  Google Scholar 

  25. Samei E, Tian X, Segars WP (2014) Determining organ dose: the holy grail. Pediatr Radiol 44(Suppl 3):460–467

    Article  PubMed  Google Scholar 

  26. Frush DP, Donnelly LF, Rosen NS (2003) Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 112:951–957

    Article  PubMed  Google Scholar 

  27. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–231 discussion 242-224

    Article  PubMed  Google Scholar 

  28. Carucci LR (2013) Imaging obese patients: problems and solutions. Abdom Imaging 38:630–646

    Article  PubMed  Google Scholar 

  29. Le NT, Robinson J, Lewis SJ (2015) Obese patients and radiography literature: what do we know about a big issue? J Med Radiat Sci 62:132–141

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nickoloff EL, Lu ZF, Dutta A, So J, Balter S, Moses J (2007) Influence of flat-panel fluoroscopic equipment variables on cardiac radiation doses. Cardiovasc Interv Radiol 30:169–176

    Article  Google Scholar 

  31. Kuon E, Weitmann K, Hummel A, Dorr M, Reffelmann T, Riad A et al (2015) Latest-generation catheterization systems enable invasive submillisievert coronary angiography. Herz 40(Suppl 3):233–239

    Article  PubMed  Google Scholar 

  32. Heidbuchel H, Wittkampf FH, Vano E, Ernst S, Schilling R, Picano E et al (2014) Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace 16:946–964

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Weiss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Local IRB approved this study and waived written informed consent.

Funding

This study received no funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, J., Pomschar, A., Rist, C. et al. Feasibility of optimized ultralow-dose pulsed fluoroscopy for upper gastrointestinal tract examinations: a phantom study with clinical correlation. Radiol med 122, 822–828 (2017). https://doi.org/10.1007/s11547-017-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-017-0793-z

Keywords

Navigation