Skip to main content

Advertisement

Log in

Novel Materials with Effective Super Dielectric Constants for Energy Storage

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To test a theory of the recently discovered phenomenon of super dielectric behavior at very low frequency, the dielectric constants of several ‘pastes’, composed of porous alumina powders filled to the point of incipient wetness with water containing dissolved sodium chloride, were measured. The effective dielectric low frequency constants of some of the pastes were greater than 1010, dramatically higher than that of any material ever reported. Moreover, the total energy density reported for one capacitor generated with NaCl-based super dielectric material is marginally higher than found in any prior report. These results are consistent with this recently postulated model of low frequency super dielectric behavior in porous, non-conductive materials saturated with ion-containing liquids: upon the application of an electric field, ions dissolved in the saturating liquid contained in the pores will travel to the ends of pore-filling liquid droplets creating giant dipoles. The fields of these giant dipoles oppose the applied field, reducing the net field created per unit of charge on the capacitor plates, effectively increasing charge/voltage ratio, hence capacitance. This is simply a version of the theory of ‘polarizable media’ found in most classic texts on electromagnetism. Other observations reported here include (1) the impact of ion concentration on dielectric values, (2) a maximum voltage similar to that associated with the electrical breakdown of water, (3) the loss of capacitance upon drying, (4) the recovery of capacitance upon the addition of water to a dry super dielectric material, and (5) the linear relationship between capacitance and inverse thickness. All observations are consistent with the earlier proposed model of the super dielectric phenomenon. An extrapolation of results suggests this technology can lead to energy density greater than the best lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Fromille and J. Phillips, Materials 7, 8197 (2014).

    Article  Google Scholar 

  2. S. Fromille and J. Phillips, Superdielectric Materials, arXiv:1403.6862, (2014).

  3. J.D. Jackson, Classical Electrodynamics, 2nd ed. (New York: Wiley, 1975).

    Google Scholar 

  4. C.G. Liu, M. Liu, F. Li, and H.M. Cheng, App. Phys. Lett. 92, 143108 (2008).

    Article  Google Scholar 

  5. H. Gualous, D. Bouquain, A. Berthon, and J.M. Kauffmann, J. Power Sources 123, 86 (2003).

    Article  Google Scholar 

  6. G.J. Reynolds, M. Krutzer, M. Dubs, H. Felzer, and R. Mamazza, Materials 5, 644 (2012).

    Article  Google Scholar 

  7. E. Barsoukov and J. Ross MacDonald, Impedance Spectroscopy Theory, Experimental and Applications, 2nd ed. (New York: Wiley, 2005), p. 4.

    Book  Google Scholar 

  8. I.D. Raistrick, D. Franceschetti, and J. Ross MacDonald, Impedance Spectroscopy.Emphasizing Solid Materials and Systems, ed. J. Ross Macdonald (New York: Wiley, 1987), p. 27.

    Google Scholar 

  9. R. Waser and O. Lohse, Science and Technology of Integrated Ferroelectrics: Selected Papers from 11 years of the International Symposium on Integrated Ferroelectrics, ed. C.P. de Aranjo, R. Ramedi, and G.W. Taylor, (CRC Press, 2001) pp. 501.

  10. Personal Communication. Prof. Yun Liu, College of Physical and Mathematical Sciences, Australia National University, Canberra Australia.(Values based on impedance spectroscopic investigation of capacitors generated according to the authors specification and using author supplied material).

  11. J. Phillips, B. Clausen, and J.A. Dumesic, J. Phys. Chem. 84, 1814 (1980).

    Article  Google Scholar 

  12. J. Phillips and J.A. Dumesic, Appl. Surf. Sci. 7, 215 (1981).

    Article  Google Scholar 

  13. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).

    Article  Google Scholar 

  14. K. Kinoshita and A. Yamaji, J. Appl. Phys. 47, 371 (1976).

    Article  Google Scholar 

  15. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).

    Article  Google Scholar 

  16. J.C. Burfoot and G.W. Taylor, Polar Dielectrics and Their Applications (Berkeley: University of California Press, 1979), pp. 359–397.

    Google Scholar 

  17. F. El Kamel and P. Gonon, J. Electrochem. Soc. 157, G91 (2010).

    Article  Google Scholar 

  18. M. Maglione, C. Elissalde, and U.-C. Chung, Proc. SPIE 7603, 76030U (2010).

    Article  Google Scholar 

  19. C. Pecharroman, F. Esteban-Betegon, F. Bartolome, J.F. Lopez-Esteban, and J. Moya, Adv. Mat. 13, 1541 (2001).

    Article  Google Scholar 

  20. C. Pecharroman, F. Esteban-Betegon, and R. Jimenez, Ferroelectrics 400, 81 (2010).

    Article  Google Scholar 

  21. S.K. Saha, Phys. Rev. B 69, 125416 (2004).

    Article  Google Scholar 

  22. M. Valant, A. Dakskobler, M. Ambrozic, and T. Kosmac, J. Eur. Cer. Soc 26, 891 (2006).

    Article  Google Scholar 

  23. I.P. Gor’kov and G.M. Eliashberg, Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Soviet Physics JETP 21, 940 (1965)].

  24. D.J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1977).

    Article  Google Scholar 

  25. A.L. Efros and B.I. Shklovskii, Phys. Stat. Sol. B 76, 475 (1976).

    Article  Google Scholar 

  26. A.L. Efros, Phys. Rev. B 84, 155134 (2011).

    Article  Google Scholar 

  27. D.L. Gerenrot, L. Berlyand, and J. Phillips, IEEE Trans. Adv. Packag. 26, 410 (2003).

    Article  Google Scholar 

  28. A.A. Samara, W.F. Hammetter, and E.L. Venturini, Phys. Rev. B 41, 8974 (1990).

    Article  Google Scholar 

  29. C.M. Rey, H. Mathias, L.R. Testardi, and S. Skirius, Phys. Rev. B 45, 10639 (1992).

    Article  Google Scholar 

  30. Y. Yang, X. Wang, and B. Liu, J. Mat. Sci. 25, 146 (2014).

    Google Scholar 

  31. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, and A. Loidl, Eur. Phys. J. 180, 61 (2009).

    Google Scholar 

  32. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Lodl, Phys. Rev. B 66, 052105 (2002).

    Article  Google Scholar 

  33. H.M. Jones and E.E. Kunhards, IEEE Trans. DEI 1, 1016 (1994).

    Article  Google Scholar 

  34. Y. Toriyama and U. Shinohara, Phys. Rev. 51, 680 (1937).

    Article  Google Scholar 

  35. T. Christen and M.W. Carlen, J. Power Sources 91, 210 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortes, F.J.Q., Phillips, J. Novel Materials with Effective Super Dielectric Constants for Energy Storage. J. Electron. Mater. 44, 1367–1376 (2015). https://doi.org/10.1007/s11664-015-3641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3641-8

Keywords

Navigation