Skip to main content
Log in

Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to select and characterize the candidate for synchronous water purification and lipid production from eight freshwater microalgae strains (Chlorella sp. HQ, C. emersonii, C. pyrenoidosa, C. vulgaris, Scenedesmus dimorphus, S. quadricauda, S. obiquus, Scenedesmus sp. LX1). The strains Chlorella sp. HQ, C. pyrenoidesa, and S. obliquus showed superiority in biomass accumulation, while the top biomass producers did not correspond to the top lipid producers. S. quadricauda achieved higher lipid content (66.1%), and Chlorella sp. HQ and S. dimorphus ranked down in sequence, with lipid content above 30%. Considering nutrient removal ability (total nitrogen (TN): 52.97%; total phosphorus (TP): 84.81%), the newly isolated microalga Chlorella sp. HQ was the possible candidate for water purification coupled with lipid production. To further investigate the lipid producing and nutrient removal mechanism of candidate microalga, the ultra structural changes especially the lipid droplets under different water qualities (different TN and TP concentrations) were characterized. The results elucidate the nutrient-deficiency (TN: 3.0 mg·L–1; TP: 0.3 mg·L–1) condition was in favor of forming lipid bodies in Chlorella sp. HQ at the subcellular level, while the biomass production was inhibited due to the decrease in chloroplast number which could further suppress the nutrient removal effect. Finally, a twophase cultivation process (a nutrient replete phase to produce biomass followed by a nutrient deplete phase to enhance lipid content) was conducted in a photo-bioreactor for Chlorella sp. HQ to serve for algae-based synchronous biodiesel production and wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou WG, Li Y C, Min M, Hu B, Zhang H, Ma X C, Li L, Cheng Y, Chen P, Ruan R. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy, 2012, 98: 433–440

    Article  CAS  Google Scholar 

  2. Zhu L D,Wang Z M, Takala J, Hiltumen E, Qin L, Xu Z B. Scale-up potential of cultivating Chlorella zofingiensis in piggerywastewater for biodiesel production. Bioresource Technology, 2013, 137: 318–325

    Article  Google Scholar 

  3. Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H O, Niederste-Hollenberg J, Hillenbrand T, Hiessl H. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environmental Science & Technology, 2012, 46(21): 11505–11514

    Article  CAS  Google Scholar 

  4. Norainia M Y, Ong H C, Badrul M J, Chong W T. A review on potential enzymatic reaction for biofuel production from algae. Renewable & Sustainable Energy Reviews, 2014, 39: 24–34

    Article  Google Scholar 

  5. Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306

    Article  CAS  Google Scholar 

  6. Tsukahara K, Sawayama S. Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute, 2005, 48(5): 251–259

    Article  CAS  Google Scholar 

  7. Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research, 2008, 1(1): 20–43

    Article  Google Scholar 

  8. Río E D, Armendáriz A, García-Gómez E, García-González M, GuerreroMG. Continuous culture methodology for the screening of microalgae for oil. Journal of Biotechnology, 2015, 195: 103–107

    Article  Google Scholar 

  9. Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Wiley-Blackwell, 2004

    Google Scholar 

  10. Li L, Cui J, Liu Q, Ding Y C, Liu J G. Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research, 2015

    Google Scholar 

  11. Wu Y H, Hu H Y, Yu Y, Zhang T Y, Zhu S F, Zhuang L L, Zhang X, Lu Y. Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renewable & Sustainable Energy Reviews, 2014, 33: 675–688

    Article  CAS  Google Scholar 

  12. Yang J, Li X, Hu H Y, Zhang X, Yu Y, Chen Y S. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoideas YJ1, in domestic secondary effluents. Applied Energy, 2011, 88(10): 3295–3299

    Article  CAS  Google Scholar 

  13. Abreu A P, Fernandes B, Vicente A A, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 2012, 118: 61–66

    Article  CAS  Google Scholar 

  14. Ren H Y, Liu B F, Kong F, Zhao L, Xie G J, Ren N Q. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresource Technology, 2014, 169: 763–767

    CAS  Google Scholar 

  15. Zhang Q, Hong Y. Effects of stationary phase elongation and initial nitrogen and phosphorus concentrations on the growth and lipid-producing potential of Chlorella sp. HQ. Journal of Applied Phycology, 2014, 26(1): 141–149

    Article  CAS  Google Scholar 

  16. State Environmental Protection Administration. Monitoring Method of Water and Wastewater. Beijing: China Environmental Science Press, 2002

    Google Scholar 

  17. Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217–232

    Article  CAS  Google Scholar 

  18. Wu H Q, Miao X L. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresource Technology, 2014, 170: 421–427

    Article  CAS  Google Scholar 

  19. Zhu S N, Huang W, Xu J, Wang Z M, Xu J L, Yuan Z H. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology, 2014, 152: 292–298

    Article  CAS  Google Scholar 

  20. Zhang Q, Hong Y. Comparison of growth and lipid accumulation properties of two oleaginous microalgae under different nutrient conditions. Frontiers of Environmental Science & Engineering, 2014, 8(5): 703–709

    Article  CAS  Google Scholar 

  21. Su Y A, Mennerich A, Urban B. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresource Technology, 2012, 124: 157–162

    Article  CAS  Google Scholar 

  22. Wang B, Li Y Q, Wu N, Lan C Q. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 2008, 79(5): 707–718

    Article  CAS  Google Scholar 

  23. Wijffels R H, Barbosa M J. An outlook on microalgal biofuels. Science, 2010, 329(5993): 796–799

    Article  CAS  Google Scholar 

  24. Nascimento I A, Marques S S I, Cabanelas I T D, Pereira S A, Druzian J I, de Souza C O, Vich D V, de Carvalho G C, Nascimento M A. Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research, 2013, 6(1): 1–13

    Article  CAS  Google Scholar 

  25. Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507

    Article  CAS  Google Scholar 

  26. Williams P J B, Laurens L M L

  27. Laurens LML. Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy & Environmental Science, 2010, 3(5): 554–590

    Article  Google Scholar 

  28. Zhao G L, Yu J Y, Jiang F F, Zhang X, Tan T W. The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresource Technology, 2012, 114: 466–471

    Article  CAS  Google Scholar 

  29. Heraud P, Wood B R, Tobin M J, Beardall J, McNaughton D. Mapping of nutrient-induced biochemical changes in living algalcells using synchrotron infrared microspectroscopy. FEMS Microbiology Letters, 2005, 249(2): 219–225

  30. Johnson D A. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae. Solar Energy Research Institute 1986

    Google Scholar 

  31. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 2008, 54(4): 621–639

    Article  CAS  Google Scholar 

  32. Sun X, Cao Y, Xu H, Liu Y, Sun J R, Qiao D R, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/ carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 2014, 155: 204–212

    Article  CAS  Google Scholar 

  33. Ho S H, Ye X T, Hasunuma T, Chang J S, Kondo A. Perspectives on engineering strategies for improving biofuel production from microalgae—A critical review. Biotechnology Advances, 2014, 32 (8): 1448–1459

    Article  CAS  Google Scholar 

  34. Hernandez J P, de-Bashan L E, Bashan Y. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 2006, 38(1–2): 190–198

    Article  CAS  Google Scholar 

  35. Sydney E B, da Silva T E, Tokarski A, Novak A C, de Carvalho J C, Woiciecohwski A L, Larroche C, Soccol C R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 2011, 88 (10): 3291–3294

    Article  CAS  Google Scholar 

  36. Li Y C, ZhouWG, Hu B, Min M, Chen P, Ruan R R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technology, 2011, 102(23): 10861–10867

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Zhang, Q., Qin, M. et al. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production. Front. Environ. Sci. Eng. 10, 548–558 (2016). https://doi.org/10.1007/s11783-016-0831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-016-0831-4

Keywords

Navigation