Skip to main content
Log in

Simultaneous multi-objective optimization of a new promoted ethylene dimerization catalyst using grey relational analysis and entropy measurement

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A hybrid approach between the Taguchi method and grey relational analysis (GRA) with entropy measurement was applied to determine a single optimum setting for reaction factors of the proposed ethylene dimerization catalyst having overall selectivity to 1-butene (S1-btn (%)) and turnover frequency (TOF (h-1)) as multiple quality characteristics. Titanium tetrabutoxide (Ti(OC4H9)4) catalyst precursor in combination with triethyl aluminum (TEA) activator, 1,4-dioxane as a suitable modifier, and ethylene dichloride (EDC) as a novel promoter were used in the catalysis. Control factors of temperature, pressure, Al/Ti, 1,4-dioxane/Ti, and EDC/Ti mol ratios were investigated on three levels and their main effects were discussed. The effect of the binary interaction between temperature, pressure, and Al/Ti mol ratio was also examined. Weight of the responses was determined using entropy. Analysis of variance (ANOVA) for data obtained from GRA indicated that EDC/Ti mol ratio with 27.64% contribution had the most profound effect on the multiple quality characteristics. Development of the weighted Grey-Taguchi method used the Taguchi method as its basic structure, adopted GRA to deal with multiple responses, and entropy to enhance the reasonability of the comprehensive index produced by GRA to make the results more objective and accurate. Overall, these combined mathematical techniques improved catalytic performance for 1-butene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Lappin and J.D. Sauer, Alpha-olefins applications handbook, Marcel Dekker, Berkeley, CA (1989).

    Google Scholar 

  2. P.-A.R. Breuil, L. Magna and H. Olivier-Bourbigou, Catal. Lett., 145, 173 (2015).

    Article  CAS  Google Scholar 

  3. Y. Yang, Z. Liu, B. Liu and R. Duchateau, ACS Catal., 3, 2353 (2013).

    Article  CAS  Google Scholar 

  4. W.R.H. Wright, A. S. Batsanov, A. M. Messinis, J. A. K. Howard, R.P. Tooze, M. J. Hanton and P.W. Dyer, Dalton Trans., 41, 5502 (2012).

    Article  CAS  Google Scholar 

  5. A. Forestiere, H. Olivier-Bourbigou and L. Saussine, Oil Gas Sci. Technol.-Rev. IFP, 64, 649 (2009).

    Article  CAS  Google Scholar 

  6. S. H. Mahdaviani, M. Parvari and D. Soudbar, Chem. Eng. Commun., 202, 1564 (2015).

    Article  CAS  Google Scholar 

  7. S. H. Mahdaviani, D. Soudbar and M. Parvari, in IAENG transactions on engineering technologies, H. K. Kim, S.-I. Ao and B.B. Rieger Eds., Springer, Dordrecht (2013).

  8. F. Grasset, J.-B. Cazaux, L. Magna, P. Braunstein and H. Olivier-Bourbigou, Dalton Trans., 41, 10396 (2012).

    Article  CAS  Google Scholar 

  9. F. Grasset and L. Magna, US Patent, 2011/0288308 A1 (2011).

    Google Scholar 

  10. S. H. Mahdaviani, D. Soudbar and M. Parvari, Int. J. Chem. Eng. Appl., 1, 276 (2010).

    CAS  Google Scholar 

  11. J.-B. Cazaux, P. Braunstein, L. Magna, L. Saussine and H. Olivier-Bourbigou, Eur. J. Inorg. Chem., 2009, 2942 (2009).

    Article  Google Scholar 

  12. N. Ajellal, M. C. A. Khan, A. D. G. Boff, M. Hörner, C. M. Thomas, J.-F. Carpentier and O. L. Casagrande, Organometallics, 25, 1213 (2006).

    Article  CAS  Google Scholar 

  13. F. Speiser, P. Braunstein and L. Saussine, Acc. Chem. Res., 38, 784 (2005).

    Article  CAS  Google Scholar 

  14. R.F. Souza, K. Bernardo-Gusmão, G.A. Cunha, C. Loup, F. Leca and R. Réau, J. Catal., 226, 235 (2004).

    Article  Google Scholar 

  15. A.W. Al-Sádoun, Appl. Catal. A: Gen., 105, 1 (1993).

    Article  Google Scholar 

  16. A. M. Al-Jaralleh, J. A. Anabtawi, M. A. B. Siddiqui, A. M. Aitani and A.W. Al-Sádoun, Catal. Today, 14, 1 (1992).

    Article  Google Scholar 

  17. S. M. Pillai, G. L. Tembe, M. Ravindranathan and S. Sivaram, Ind. Eng. Chem. Res., 27, 1971 (1988).

    Article  CAS  Google Scholar 

  18. G.P. Belov, F.S. Dýachkovskii and V. I. Smirnov, Pet. Chem. U.S.S.R., 18, 223 (1979).

    Article  Google Scholar 

  19. A. Bre, Y. Chauvin and D. Commereuc, Nouv. J. Chim., 10, 535 (1986).

    CAS  Google Scholar 

  20. G. P. Belov, T. S. Dzhabiev and I. M. Kolesnikov, J. Mol. Catal., 14, 105 (1982).

    Article  CAS  Google Scholar 

  21. J.A. Suttil and D. S. McGuinness, Organometallics, 31, 7004 (2012).

    Article  CAS  Google Scholar 

  22. R. Robinson, D. S. McGuinness and B. F. Yates, ACS Catal., 3, 3006 (2013).

    Article  CAS  Google Scholar 

  23. S. Tang, Z. Liu, X. Yan, N. Li, R. Cheng, X. He and B. Liu, Appl. Catal. A: Gen., 481, 39 (2014).

    Article  CAS  Google Scholar 

  24. H. Chen, X. Liu, W. Hu, Y. Ning and T. Jiang, J. Mol. Catal. A: Chem., 270, 273 (2007).

    Article  CAS  Google Scholar 

  25. Y. Yang, K. Kim, J. Lee, H. Paik and H.G. Jang, Appl. Catal. A: Gen., 193, 29 (2000).

    Article  CAS  Google Scholar 

  26. O. L. Davies and P. L. Goldsmith, Statistical methods in research and production with special reference to the chemistry industry, published for Imperial Chemical Industries Ltd., 4th Rev. Ed., Oliver and Boyd, Edinburgh (1972).

    Google Scholar 

  27. R. L. Mason, R. F. Gunst and J. L. Hess, Statistical design and analysis of experiments: with applications to engineering and science, 2nd Ed., Wiley, New York (2003).

    Book  Google Scholar 

  28. G. Taguchi, System of experimental design: Engineering methods to optimize quality and minimize costs, UNIPUB/Kraus International Publications, New York (1987).

    Google Scholar 

  29. P.J. Ross, Taguchi techniques for quality engineering, 2nd Ed., McGraw-Hill, New York (1996).

    Google Scholar 

  30. J. L. Deng, J. Grey Syst., 1, 1 (1989).

    Google Scholar 

  31. K. L. Wen, T. C. Chang and X. L. You, in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Diego, CA, 2, 1842 (1998).

    Google Scholar 

  32. M. S. Phadke, Quality engineering using robust design, AT&T Bell Laboratories Report, Prentice-Hall International Editions, New Jersey (1989).

    Google Scholar 

  33. R.K. Roy, Design of experiments using the Taguchi approach:16steps to product and process improvement, John Wiley & Sons, Inc., New York (2001).

    Google Scholar 

  34. Ö. Küçük, Korean J. Chem. Eng., 23, 21 (2006).

    Article  Google Scholar 

  35. M. Lu and K. Wevers, J. Grey Syst., 10, 47 (2007).

    Google Scholar 

  36. S. Liu and Y. Lin, Grey information: Theory and practical applications (Advanced information and knowledge processing), Springer-Verlag, New York (2005).

    Google Scholar 

  37. J. Yan and L. Li, J. Clean. Prod., 52, 462 (2013).

    Article  Google Scholar 

  38. E. Kuram and B. Ozcelik, Measurement, 46, 1849 (2013).

    Article  Google Scholar 

  39. S. Padhee, S. Pani and S. S. Mahapatra, J. Manuf. Eng., 226, 176 (2012).

    Article  Google Scholar 

  40. R. Siriyala, G. K. Alluru, R. M. R. Penmetsa and M. Duraiselvam, Front. Mech. Eng., 7, 279 (2012).

    Article  Google Scholar 

  41. S. Mondal, C.P. Paul, L.M. Kukreja, A. Bandyopadhyay and P.K. Pal, Int. J. Adv. Manuf. Technol., 54, 957 (2011).

    Article  Google Scholar 

  42. B. Acherjee, A. S. Kuar, S. Mitra and D. Misra, Int. J. Adv. Manuf. Technol., 56, 995 (2011).

    Article  Google Scholar 

  43. J. H. Jung and W.T. Kwon, J. Mech. Sci. Technol., 24, 1083 (2010).

    Article  Google Scholar 

  44. C.-C. Chen, C.-C. Tsao, Y.-C. Lin and C.-Y. Hsu, Ceram. Int., 36, 979 (2010).

    Article  CAS  Google Scholar 

  45. C.-J. Tzeng, Y.-H. Lin, Y. K. Yung and M.-C. Jeng, J. Mater. Process. Technol., 209, 2753 (2009).

    Article  CAS  Google Scholar 

  46. U. Caydas and A. Hascalik, Opt. Laser Technol., 40, 987 (2008).

    Article  Google Scholar 

  47. L. K. Pan, C. C. Wang, S. L. Wei and H. F. Sher, J. Mater. Process. Technol., 182, 107 (2007).

    Article  CAS  Google Scholar 

  48. C.-F. J. Kuo, T.-L. Su and C.-P. Tsai, Fiber. Polym., 8, 654 (2007).

    Article  Google Scholar 

  49. P.N. Singh, K. Raghukandan and B. C. Pai, J. Mater. Process. Technol., 155-156, 1558 (2004).

    Article  Google Scholar 

  50. C. P. Fung, C. H. Huang and J. L. Doong, J. Reinf. Plast. Comp., 22, 51 (2003).

    Article  CAS  Google Scholar 

  51. P. S. Kao and H. Hocheng, J. Mater. Process. Technol., 140, 255 (2003).

    Article  CAS  Google Scholar 

  52. Y. S. Tarng, S. C. Juang and C. H. Chang, J. Mater. Process. Technol., 128, 1 (2002).

    Article  Google Scholar 

  53. J. L. Lin and C. L. Lin, Int. J. Mach. Tools Manuf., 42, 237 (2002).

    Article  Google Scholar 

  54. A. Sharma and V. Yadava, Opt. Laser Technol., 44, 159 (2012).

    Article  CAS  Google Scholar 

  55. K. Jangra, S. Grover and A. Aggarwal, Front. Mech. Eng., 7, 288 (2012).

    Article  Google Scholar 

  56. C.-F. J. Kuo, T.-L. Su, P.-R. Jhang, C.-Y. Huang and C.-H. Chiu, Energy, 36, 3554 (2011).

    Article  Google Scholar 

  57. A. Sharma and V. Yadava, Mater. Manuf. Process., 26, 1522 (2011).

    Article  CAS  Google Scholar 

  58. G. K. Singh, V. Yadava and R. Kumar, Int. J. Precis. Eng. Manuf., 11, 509 (2010).

    Article  Google Scholar 

  59. Y. M. Chiang and H. H. Hsieh, Comput. Ind. Eng., 56, 648 (2009).

    Article  Google Scholar 

  60. R. Rao and V. Yadava, Opt. Laser Technol., 41, 922 (2009).

    Article  CAS  Google Scholar 

  61. H.R. Lindman, Analysis of variance in experimental design, Springer-Verlag, Berlin (1992).

    Book  Google Scholar 

  62. C.-S. Chou, G.-Y. Ho and C.-I. Hang, Adv. Powder Technol., 20, 55 (2009).

    Article  CAS  Google Scholar 

  63. C.-S. Chou, C.-L. Liu and W.-C. Chaung, Mater. Des., 44, 172 (2013).

    Article  CAS  Google Scholar 

  64. B. Ramavandi, G. Asgari, J. Faradmal, S. Sahebi and B. Roshani, Korean J. Chem. Eng., 31, 2207 (2014).

    Article  CAS  Google Scholar 

  65. Y. Sahin, Mater. Sci. Eng. A, 408, 1 (2005).

    Article  Google Scholar 

  66. G. M. P. Bardinet and R. E. J. Keck, US Patent, 3,752,834 (1973).

  67. D. F. Herman, US Patent, 2, 654,770 (1953).

    Google Scholar 

  68. A. K. Pandey and A. K. Dubey, Opt. Laser Eng., 50, 328 (2012).

    Article  Google Scholar 

  69. V. C. Srivastava, I.D. Mall and I. M. Mishra, Ind. Eng. Chem. Res., 46, 5697 (2007).

    Article  CAS  Google Scholar 

  70. R. A. Fisher, Statistical methods for research workers, Oliver and Boyd, London (1925).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hamed Mahdaviani.

Additional information

S.H.M. dedicates this paper to the memory of his late father, Mr. Seyed Hasan Mahdaviani, renowned professor of Persian literature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdaviani, S.H., Parvari, M. & Soudbar, D. Simultaneous multi-objective optimization of a new promoted ethylene dimerization catalyst using grey relational analysis and entropy measurement. Korean J. Chem. Eng. 33, 423–437 (2016). https://doi.org/10.1007/s11814-015-0158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0158-z

Keywords

Navigation