Skip to main content

Advertisement

Log in

Microenvironmental Clues for Glioma Immunotherapy

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Gliomas have been viewed for decades as inaccessible for a meaningful antitumor immune response as they grow in a sanctuary site protected from infiltrating immune cells. Moreover, the glioma microenvironment constitutes a hostile environment for an efficient antitumor immune response as glioma-derived factors such as transforming growth factor β and catabolites of the essential amino acid tryptophan paralyze T-cell function. There is growing evidence from preclinical and clinical studies that a meaningful antitumor immunity exists in glioma patients and that it can be activated by vaccination strategies. As a consequence, the concept of glioma immunotherapy appears to be experiencing a renaissance with the first phase 3 randomized immunotherapy trials entering the clinical arena. On the basis of encouraging results from other tumor entities using immunostimulatory approaches by blocking endogenous T-cell suppressive pathways mediated by cytotoxic T-lymphocyte antigen 4 or programmed cell death protein 1/programmed cell death protein 1 ligand 1 with humanized antibodies, there is now a realistic and promising option to combine active immunotherapy with agents blocking the immunosuppressive microenvironment in patients with gliomas to allow a peripheral antitumor immune response induced by vaccination to become effective. Here we review the current clinical and preclinical evidence of antimicroenvironment immunotherapeutic strategies in gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain-barrier

CNS:

Central nervous system

COX:

Cyclooxygenase

CTLA4:

Cytotoxic T-lymphocyte antigen 4

GIC:

Glioma-initiating cell

IDO:

Indoleamine 2,3-dioxygenase

PD1:

Programmed cell death protein 1

PDL1:

Programmed cell death protein 1 ligand 1

STAT3:

Signal transducer and activator of transcription 3

Treg :

Regulatory T cells

TDO:

Tryptophan 2,3-dioxygenase

TGF-β:

Transforming growth factor β

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abou-Ghazal M, Yang DS, Qiao W, et al. The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res. 2008;14:8228–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Adams S, Braidy N, Bessede A, et al. The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 2012;72:5649–57.

    PubMed  CAS  Google Scholar 

  3. Azaro A, Baselga J, Sepulveda JM, et al. The oral transforming growth factor-beta (TGF-β) receptor I kinase inhibitor LY2157299 plus lomustine in patients with treatment-refractory malignant glioma: the first human dose study. J Clin Oncol. 2012;30(15 Suppl):2042.

    Google Scholar 

  4. Badawy AA, Evans M. The mechanism of inhibition of rat liver tryptophan pyrrolase activity by 4-hydroxypyrazolo (3,4-d) pyrimidine (Allopurinol). Biochem J. 1973;133:585–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Barua NU, Gill SS, Love S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol. 2013. doi:10.1111/bpa.12082.

    PubMed  Google Scholar 

  6. Batchelor TT, Platten M, Palmer-Toy DE, et al. Chorea as a paraneoplastic complication of Hodgkin's disease. J Neurooncol. 1998;36:185–90.

    PubMed  CAS  Google Scholar 

  7. Beatty GL, O'Dwyer PJ, Clark J, et al. Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral inhibitor of indoleamine 2,3-dioxygenase (IDO1) INCB024360 in patients (pts) with advanced malignancies. J Clin Oncol. 2013;31(15):3025.

    Google Scholar 

  8. Beltrami S, Gordon J. Immune surveillance and response to JC virus infection and PML. J Neurovirol. 2013. doi:10.1007/s13365-013-0222-6.

    PubMed  Google Scholar 

  9. Bloch O, Crane CA, Kaur R, et al. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19:3165–75.

    PubMed  CAS  Google Scholar 

  10. Bogdahn U, Hau P, Stockhammer G, et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology. 2011;13:132–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAK-STAT. 2013;2:e23828.

    PubMed Central  PubMed  Google Scholar 

  12. Braun DP, Penn RD, Flannery AM, et al. Immunoregulatory cell function in peripheral blood leukocytes of patients with intracranial gliomas. Neurosurgery. 1982;10:203–9.

    PubMed  CAS  Google Scholar 

  13. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol. 2013;14:1007–13.

    PubMed  CAS  Google Scholar 

  14. Carpentier AF, Brandes AA, Kesari S, et al. Safety interim data from a three-arm phase II study evaluating safety and pharmacokinetics of the oral transforming growth factor-beta (TGF-β) receptor I kinase inhibitor LY2157299 monohydrate in patients with glioblastoma at first progression. J Clin Oncol. 2013;31(15 Suppl):2061.

    Google Scholar 

  15. Castriconi R, Daga A, Dondero A, et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 2009;182:3530–9.

    PubMed  CAS  Google Scholar 

  16. Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013;34:556–63.

    PubMed  CAS  Google Scholar 

  17. Charles NA, Holland EC, Gilbertson R, et al. The brain tumor microenvironment. Glia. 2011;59:1169–80.

    PubMed  Google Scholar 

  18. Chen J, Mckay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149:36–47.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Crane CA, Ahn BJ, Han SJ, et al. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-Oncology. 2012;14:584–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Da Fonseca AC, Badie B. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol. 2013;2013:264124.

    PubMed  Google Scholar 

  21. Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014. doi:10.1172/JCI67313.

    PubMed Central  Google Scholar 

  22. Di Tomaso T, Mazzoleni S, Wang E, et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin Cancer Res. 2010;16:800–13.

    PubMed Central  PubMed  Google Scholar 

  23. Dietrich PY, Dutoit V, Tran Thang NN, et al. T-cell immunotherapy for malignant glioma: toward a combined approach. Curr Opin Oncol. 2010;22:604–10.

    PubMed  Google Scholar 

  24. Donson AM, Birks DK, Schittone SA, et al. Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J Immunol. 2012;189:1920–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Fan QW, Cheng CK, Gustafson WC, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 2013;24:438–49.

    PubMed  CAS  Google Scholar 

  26. Fecci PE, Ochiai H, Mitchell DA, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007;13:2158–67.

    PubMed  CAS  Google Scholar 

  27. Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 2003;63:8996–9006.

    PubMed  CAS  Google Scholar 

  28. Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-β enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res. 2004;64:7596–603.

    PubMed  CAS  Google Scholar 

  29. Fujita M, Kohanbash G, Fellows-Mayle W, et al. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011;71:2664–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol. 2007;28:12–8.

    PubMed  CAS  Google Scholar 

  31. Gately MK, Glaser M, Dick SJ, et al. In vitro studies on the cell-mediated immune response to human brain tumors. I. Requirement for third-party stimulator lymphocytes in the induction of cell-mediated cytotoxic responses to allogeneic cultured gliomas. J Natl Cancer Inst. 1982;69:1245–54.

    PubMed  CAS  Google Scholar 

  32. Gerosa MA, Olivi A, Rosenblum ML, et al. Impaired immunocompetence in patients with malignant gliomas: the possible role of Tg-lymphocyte subpopulations. Neurosurgery. 1982;10:571–3.

    PubMed  CAS  Google Scholar 

  33. Gilbert MR, Gonzalez J, Hunter K, et al. A phase I factorial design study of dose-dense temozolomide alone and in combination with thalidomide, isotretinoin, and/or celecoxib as postchemoradiation adjuvant therapy for newly diagnosed glioblastoma. Neuro-Oncology. 2010;12:1167–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Glas M, Coch C, Trageser D, et al. Targeting the cytosolic innate immune receptors RIG-I and MDA5 effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells. 2013;31:1064–74.

    PubMed  CAS  Google Scholar 

  35. Grauer OM, Nierkens S, Bennink E, et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer. 2007;121:95–105.

    PubMed  CAS  Google Scholar 

  36. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    PubMed  CAS  Google Scholar 

  38. Heimberger AB. The therapeutic potential of inhibitors of the signal transducer and activator of transcription 3 for central nervous system malignancies. Surg Neurol Int. 2011;2:163.

    PubMed Central  PubMed  Google Scholar 

  39. Hodi FS, O'Day SJ, Mcdermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. This presents the first evidence from a phase 3 clinical trial that a passive immunotherapy is sufficient to achieve a clinical meaningful antitumor immunity.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Holmgaard RB, Zamarin D, Munn DH, et al. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210:1389–402.

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Hussain SF, Kong LY, Jordan J, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 2007;67:9630–6.

    PubMed  CAS  Google Scholar 

  42. Jackson E, Dees EC, Kauh JS, et al. A phase I study of indoximod in combination with docetaxel in metastatic solid tumors. J Clin Oncol. 2013;31(15 Suppl):3026.

    Google Scholar 

  43. Jacobs SK, Wilson DJ, Melin G, et al. Interleukin-2 and lymphokine activated killer (LAK) cells in the treatment of malignant glioma: clinical and experimental studies. Neurol Res. 1986;8:81–7.

    PubMed  CAS  Google Scholar 

  44. Jacobs JF, Idema AJ, Bol KF, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol. 2010;225:195–9.

    PubMed  CAS  Google Scholar 

  45. Kim YH, Jung TY, Jung S, et al. Tumour-infiltrating T-cell subpopulations in glioblastomas. Br J Neurosurg. 2012;26:21–7.

    PubMed  Google Scholar 

  46. Kmiecik J, Poli A, Brons NH, et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol. 2013;264:71–83.

    PubMed  CAS  Google Scholar 

  47. Kohanbash G, Mckaveney K, Sakaki M, et al. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 2013;73:6413–23.

    PubMed  CAS  Google Scholar 

  48. Kuppner MC, Hamou MF, Bodmer S, et al. The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer. 1988;42:562–7.

    PubMed  CAS  Google Scholar 

  49. Lanz TV, Becker S, Osswald M, et al. Protein kinase Cβ as a therapeutic target stabilizing blood-brain barrier disruption in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2013;111(1):409–14.

    Google Scholar 

  50. Leitlein J, Aulwurm S, Waltereit R, et al. Processing of immunosuppressive pro-TGF-β1,2 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol. 2001;166:7238–43.

    PubMed  CAS  Google Scholar 

  51. Lemke D, Pfenning PN, Sahm F, et al. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res. 2012;18:105–17.

    PubMed  CAS  Google Scholar 

  52. Levy NL, Mahaley Jr MS, Day ED. In vitro demonstration of cell-mediated immunity to human brain tumors. Cancer Res. 1972;32:477–82.

    PubMed  CAS  Google Scholar 

  53. Liu Y, Carlsson R, Ambjorn M, et al. PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci. 2013;33:14231–45.

    PubMed  CAS  Google Scholar 

  54. Lohr J, Ratliff T, Huppertz A, et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res. 2011;17:4296–308.

    PubMed  CAS  Google Scholar 

  55. Maes W, Verschuere T, Van Hoylandt A, et al. Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain. Clin Dev Immunol. 2013;2013:952469.

    PubMed Central  PubMed  Google Scholar 

  56. Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13:459–65. This is an important study that demonstrates that passive immunotherapy is safe and effective in brain tumors.

    PubMed  CAS  Google Scholar 

  57. Mittelbronn M, Platten M, Zeiner P, et al. Macrophage migration inhibitory factor (MIF) expression in human malignant gliomas contributes to immune escape and tumour progression. Acta Neuropathol. 2011;122:353–65.

    PubMed  CAS  Google Scholar 

  58. Muller AJ, Duhadaway JB, Donover PS, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312–9.

    PubMed  CAS  Google Scholar 

  59. Muller AC, Dairam A, Limson JL, et al. Mechanisms by which acyclovir reduces the oxidative neurotoxicity and biosynthesis of quinolinic acid. Life Sci. 2007;80:918–25.

    PubMed  Google Scholar 

  60. Munn DH. Blocking IDO, activity to enhance anti-tumor immunity. Front Biosci (Elite Ed). 2012;4:734–45.

    Google Scholar 

  61. Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med. 2004;10:15–8.

    PubMed  CAS  Google Scholar 

  62. Newton RC, Scherle PA, Bowman K, et al. Pharmacodynamic assessment of INCB024360, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), in advanced cancer patients. J Clin Oncol. 2012;30(15 Suppl):2500.

    Google Scholar 

  63. Ochs K, Sahm F, Opitz CA, et al. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol. 2013;265(1–2):106–16.

    PubMed  CAS  Google Scholar 

  64. Opitz CA, Litzenburger UM, Lutz C, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-β and protein kinase R. Stem Cells. 2009;27:909–19.

    PubMed  CAS  Google Scholar 

  65. Opitz CA, Litzenburger UM, Opitz U, et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One. 2011;6:e19823.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;This was the first study to demonstrate that kynurenine is a physiologically relevant ligand of the aryl hydrocarbon receptor, uncovering a novel immunosuppressive pathway in gliomas:197–203.

    Google Scholar 

  67. Pantouris G, Mowat CG. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun. 2014;443:28–31.

    PubMed  CAS  Google Scholar 

  68. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.

    PubMed  CAS  Google Scholar 

  69. Pfenning PN, Weiler M, Merz C, et al. Abstract LB-382: inhibition of CD95 signalling by APG-101 enhances efficacy of radiotherapy (RT) and reduces RT-induced tumor satellite formation. Cancer Res. 2011;71, LB-382.

    Google Scholar 

  70. Pilotte L, Larrieu P, Stroobant V, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(7):2497–502.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Platten M, Steinman L. Multiple sclerosis: trapped in deadly glue. Nat Med. 2005;11:252–3.

    PubMed  CAS  Google Scholar 

  72. Platten M, Wick W, Wild-Bode C, et al. Transforming growth factors β1 (TGF-β1) and TGF-β2 promote glioma cell migration via up-regulation of αVβ3 integrin expression. Biochem Biophys Res Commun. 2000;268:607–11.

    PubMed  CAS  Google Scholar 

  73. Platten M, Wick W, Weller M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech. 2001;52:401–10.

    PubMed  CAS  Google Scholar 

  74. Platten M, Wild-Bode C, Wick W, et al. N-[3,4-Dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-beta release and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer. 2001;93:53–61.

    PubMed  CAS  Google Scholar 

  75. Platten M, Kretz A, Naumann U, et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol. 2003;54:388–92.

    PubMed  CAS  Google Scholar 

  76. Platten M, Wick W, Van Den Eynde B. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72:1–6. This review summarizes the mechanisms and relevance of tryptophan catabolism in cancer.

    Google Scholar 

  77. Prendergast GC. Cancer: why tumours eat tryptophan. Nature. 2011;478:192–4.

    PubMed  CAS  Google Scholar 

  78. Prosniak M, Harshyne LA, Andrews DW, et al. Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res. 2013;19:3776–86.

    PubMed  CAS  Google Scholar 

  79. Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    PubMed  CAS  Google Scholar 

  80. Raychaudhuri B, Rayman P, Ireland J, et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology. 2011;13:591–9.

    PubMed Central  PubMed  Google Scholar 

  81. Ribas A, Kefford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31:616–22.

    PubMed  CAS  Google Scholar 

  82. Ridley A, Cavanagh JB. Lymphocytic infiltration in gliomas: evidence of possible host resistance. Brain. 1971;94:117–24.

    PubMed  CAS  Google Scholar 

  83. Rodon Ahnert J, Baselga J, Calvo E, et al. First human dose (FHD) study of the oral transforming growth factor-beta receptor I kinase inhibitor LY2157299 in patients with treatment-refractory malignant glioma. J Clin Oncol. 2011;29(15 Suppl):3011.

    Google Scholar 

  84. Roth P, Aulwurm S, Gekel I, et al. Regeneration and tolerance factor: a novel mediator of glioblastoma-associated immunosuppression. Cancer Res. 2006;66:3852–8.

    PubMed  CAS  Google Scholar 

  85. Roth P, Mittelbronn M, Wick W, et al. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res. 2007;67:3540–4.

    PubMed  CAS  Google Scholar 

  86. Sahm F, Oezen I, Opitz CA, et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 2013;73(11):3225–34.

    PubMed  CAS  Google Scholar 

  87. Sampson JH, Schmittling RJ, Archer GE, et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7:e31046.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Sawamura Y, Hosokawa M, Kuppner MC, et al. Antitumor activity and surface phenotypes of human glioma-infiltrating lymphocytes after in vitro expansion in the presence of interleukin 2. Cancer Res. 1989;49:1843–9.

    PubMed  CAS  Google Scholar 

  89. Smith C, Chang MY, Parker KH, et al. IDO Is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012;2(8):722–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Smolders J, Remmerswaal EB, Schuurman KG, et al. Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain. Acta Neuropathol. 2013;126:525–35.

    PubMed  CAS  Google Scholar 

  91. Soliman HH, Neuger A, Noyes D, et al. A phase I study of 1-methyl-D-tryptophan in patients with advanced malignancies. J Clin Oncol. 2012;30(15 Suppl):2501.

    Google Scholar 

  92. Soliman HH, Minton SE, Han HS, et al. A phase I study of ad.p53 DC vaccine in combination with indoximod in metastatic solid tumors. J Clin Oncol. 2013;31(15 Suppl):3069.

    Google Scholar 

  93. Suarez C, Rodon J, Desjardins A, et al. Phase Ib study evaluating safety and pharmacokinetics (PK) of the oral transforming growth factor-beta (TGF-β) receptor I kinase inhibitor LY2157299 monohydrate (LY) when combined with chemoradiotherapy in newly diagnosed malignant gliomas. J Clin Oncol. 2013;31(15 Suppl):2039.

    Google Scholar 

  94. Tran Thang NN, Derouazi M, Philippin G, et al. Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res. 2010;70:4829–39.

    PubMed  Google Scholar 

  95. Tran TT, Uhl M, Ma JY, et al. Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model. Neuro-Oncology. 2007;9:259–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Ueda R, Fujita M, Zhu X, et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res. 2009;15:6551–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 2004;64:7954–61.

    PubMed  CAS  Google Scholar 

  98. Umansky V, Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013;6:169–77.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.

    PubMed  CAS  Google Scholar 

  100. Vom Berg J, Vrohlings M, Haller S, et al. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med. 2013;210:2803–11.

    PubMed  CAS  Google Scholar 

  101. Wainwright DA, Sengupta S, Han Y, et al. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-Oncology. 2011;13:1308–23.

    PubMed Central  PubMed  Google Scholar 

  102. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    PubMed  CAS  Google Scholar 

  103. Wang Y, Ait-Oufella H, Herbin O, et al. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest. 2010;120:422–32.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Wang X, Crowe PJ, Goldstein D, et al. STAT3 inhibition, a novel approach to enhancing targeted therapy in human cancers (review). Int J Oncol. 2012;41:1181–91.

    PubMed  CAS  Google Scholar 

  105. Weber JS, Kudchadkar RR, Yu B, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31:4311–8.

    PubMed  CAS  Google Scholar 

  106. Wei J, Barr J, Kong LY, et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res. 2010;16:461–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Wei J, Wang F, Kong LY, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 2013;73:3913–26.

    PubMed  CAS  Google Scholar 

  108. Wei B, Wang L, Zhao X, et al. The upregulation of programmed death 1 on peripheral blood T cells of glioma is correlated with disease progression. Tumour Biol. 2013. doi:10.1007/s13277-013-1376-9.

    Google Scholar 

  109. Weiler M, Hartmann C, Wiewrodt D, et al. Chemoradiotherapy of newly diagnosed glioblastoma with intensified temozolomide. Int J Radiat Oncol Biol Phys. 2010;77:670–6.

    PubMed  CAS  Google Scholar 

  110. Wick W, Weller M. Trabedersen to target transforming growth factor-β: when the journey is not the reward, in reference to Bogdahn et al. (Neuro-Oncology 2011;13:132–142). Neuro-Oncology. 2011;13:559–60. author reply 561–2.

    PubMed Central  PubMed  Google Scholar 

  111. Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-β. J Neurooncol. 2001;53:177–85.

    PubMed  CAS  Google Scholar 

  112. Wick W, Naumann U, Weller M. Transforming growth factor-β: a molecular target for the future therapy of glioblastoma. Curr Pharm Des. 2006;12:341–9.

    PubMed  CAS  Google Scholar 

  113. Wiencke JK, Accomando WP, Zheng S, et al. Epigenetic biomarkers of T-cells in human glioma. Epigenetics. 2012;7:1391–402.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Wilmotte R, Burkhardt K, Kindler V, et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport. 2005;16:1081–5.

    PubMed  CAS  Google Scholar 

  115. Wintterle S, Schreiner B, Mitsdoerffer M, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63:7462–7.

    PubMed  CAS  Google Scholar 

  116. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33. This was the first study to demonstrate safety and efficacy of combined anti-CTLA4 and anti-PD-1 therapy.

    PubMed  CAS  Google Scholar 

  117. Wood GW, Morantz RA. Depressed T lymphocyte function in brain tumor patients: monocytes as suppressor cells. J Neurooncol. 1983;1:87–94.

    PubMed  CAS  Google Scholar 

  118. Wrann M, Bodmer S, De Martin R, et al. T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J. 1987;6:1633–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Yao Y, Tao R, Wang X, et al. B7-H1 is correlated with malignancy-grade gliomas but is not expressed exclusively on tumor stem-like cells. Neuro-Oncology. 2009;11:757–66.

    PubMed Central  PubMed  Google Scholar 

  120. Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Zhang M, Kleber S, Rohrich M, et al. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 2011;71:7155–67.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from German Cancer Aid (110392) to Michael Platten and the German Research Foundation (SFB938 TP K) to Michael Platten and Wolfgang Wick.

Compliance with Ethics Guidelines

Conflict of Interest

Katharina Ochs, Dieter Lemke, and Christiane Opitz declare that they have no conflict of interest.

Michael Platten is a member of the advisory boards of Merck and Miltenyi Biotech, has received speakers honoraria from Merck, Medac, and Novartis, and has received research funding from Merck, Bayer Schering, and Novartis unrelated to this article.

Wolfgang Wick has received consulting and lecture fees from MSD, Roche, and Magforce, as well as research support from Apogenix, Boehringer Ingelheim, Eli Lilly, MSD, and Roche. He serves on the steering committees of the AVAglio and CENTRIC trials and is the lead investigator of other trials in glioma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Platten.

Additional information

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platten, M., Ochs, K., Lemke, D. et al. Microenvironmental Clues for Glioma Immunotherapy. Curr Neurol Neurosci Rep 14, 440 (2014). https://doi.org/10.1007/s11910-014-0440-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0440-1

Keywords

Navigation