Skip to main content

Advertisement

Log in

Thyroid Cathepsin K: Roles in Physiology and Thyroid Disease

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The human genome encodes 11 cysteine cathepsins belonging to the papain-like family of cysteine peptidases that are known predominantly as endo-lysosomal enzymes. However, it is now understood that the functions and activities of cysteine cathepsins are not limited to endo-lysosomal compartments, as they are also active in the peri- and extracellular space. The thyroid gland is an endocrine organ where such intra- and extracellular proteolytic activities are required to solubilize the prohormone thyroglobulin from its luminal, covalently cross-linked storage forms for subsequent processing into smaller protein fragments and thyroid hormone liberation. Cathepsin K has been identified as one of the cysteine cathepsins with a crucial role in thyroglobulin processing. However, cathepsin K has mainly been a key focus of attention in the last few years because of its high expression in osteoclasts and due to its essential role as collagenase and elastase important for bone remodelling. Besides its remarkable function as an endopeptidase acting on high-molecular mass, covalently cross-linked extracellular substrates such as type I collagen, elastin or thyroglobulin, cathepsin K is also one of the very few proteolytic enzymes that is able to directly liberate thyroxine from thyroglobulin fragments by exopeptidase action. Thus, thyroid cathepsin K is now accepted as a cysteine peptidase with a vital role in liberation of thyroid hormones, which in turn are essential for homoeostasis by triggering a number of important biological processes, ranging from growth and brain development in young vertebrates to tissue remodelling events during morphogenesis or wound healing, as well as control of metabolic pathways and thermoregulation in adults. This review focuses on thyroid cathepsin K and will discuss how localization and trafficking within thyroid epithelial cells explain its thyroid-specific functions. The effects of targeted cathepsin K gene ablation will be summarized from the perspective of the thyroid gland, and we will propose potential consequences of short- and long-term inhibition of thyroid cathepsin K activity for the main thyroid hormone target tissues, namely bone, cardiovascular and immune systems, intestine, and the central nervous system, in addition to the thyroid gland itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest. 2003;111(11):1733–45.

    Article  PubMed  CAS  Google Scholar 

  2. Tepel C, Bromme D, Herzog V, Brix K. Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci. 2000;113(Pt 24):4487–98.

    PubMed  CAS  Google Scholar 

  3. Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.

    Article  PubMed  CAS  Google Scholar 

  4. Dunn AD, Crutchfield HE, Dunn JT. Proteolytic processing of thyroglobulin by extracts of thyroid lysosomes. Endocrinology. 1991;128(6):3073–80.

    Article  PubMed  CAS  Google Scholar 

  5. Dunn JT, Dunn AD. The importance of thyroglobulin structure for thyroid hormone biosynthesis. Biochimie. 1999;81(5):505–9.

    Article  PubMed  CAS  Google Scholar 

  6. Rousset B, Mornex R. The thyroid hormone secretory pathway-current dogmas and alternative hypotheses. Mol Cell Endocrinol. 1991;78(1–2):C89–93.

    Article  PubMed  CAS  Google Scholar 

  7. Rousset BA. Intracellular traffic and proteolytic cleavage of thyroglobulin, the thyroid prohormone. Ann Endocrinol (Paris). 1991;52(5):355–60.

    CAS  Google Scholar 

  8. Lipardi C, Ruggiano G, Perrone L, Paladino S, Monlauzeur L, Nitsch L, Le Bivic A, Zurzolo C. Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells. Endocrinology. 2002;143(4):1291–301.

    Article  PubMed  CAS  Google Scholar 

  9. Lemansky P, Brix K, Herzog V. Iodination of mature cathepsin D in thyrocytes as an indicator for its transport to the cell surface. Eur J Cell Biol. 1998;76(1):53–62.

    PubMed  CAS  Google Scholar 

  10. Brix K, Lemansky P, Herzog V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology. 1996;137(5):1963–74.

    Article  PubMed  CAS  Google Scholar 

  11. Brix K, Linke M, Tepel C, Herzog V. Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem. 2001;382(5):717–25.

    Article  PubMed  CAS  Google Scholar 

  12. Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci. 2002;115(Pt 24):4877–89.

    Article  PubMed  CAS  Google Scholar 

  13. Feracci H, Bernadac A, Hovsepian S, Fayet G, Maroux S. Aminopeptidase N is a marker for the apical pole of porcine thyroid epithelial cells in vivo and in culture. Cell Tissue Res. 1981;221(1):137–46.

    Article  PubMed  CAS  Google Scholar 

  14. Zurzolo C, Le Bivic A, Quaroni A, Nitsch L, Rodriguez-Boulan E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 1992;11(6):2337–44.

    PubMed  CAS  Google Scholar 

  15. Dunn AD, Myers HE, Dunn JT. The combined action of two thyroidal proteases releases T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology. 1996;137(8):3279–85.

    Article  PubMed  CAS  Google Scholar 

  16. Baudry N, Lejeune PJ, Delom F, Vinet L, Carayon P, Mallet B. Role of multimerized porcine thyroglobulin in iodine storage. Biochem Biophys Res Commun. 1998;242(2):292–6.

    Article  PubMed  CAS  Google Scholar 

  17. Berndorfer U, Wilms H, Herzog V. Multimerization of thyroglobulin (TG) during extracellular storage: isolation of highly cross-linked TG from human thyroids. J Clin Endocrinol Metab. 1996;81(5):1918–26.

    Article  PubMed  CAS  Google Scholar 

  18. Herzog V, Berndorfer U, Saber Y. Isolation of insoluble secretory product from bovine thyroid: extracellular storage of thyroglobulin in covalently cross-linked form. J Cell Biol. 1992;118(5):1071–83.

    Article  PubMed  CAS  Google Scholar 

  19. Klein M, Gestmann I, Berndorfer U, Schmitz A, Herzog V. The thioredoxin boxes of thyroglobulin: possible implications for intermolecular disulfide bond formation in the follicle lumen. Biol Chem. 2000;381(7):593–601.

    Article  PubMed  CAS  Google Scholar 

  20. Saber-Lichtenberg Y, Brix K, Schmitz A, Heuser JE, Wilson JH, Lorand L, Herzog V. Covalent cross-linking of secreted bovine thyroglobulin by transglutaminase. Faseb J. 2000;14(7):1005–14.

    PubMed  CAS  Google Scholar 

  21. Bromme D, Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler. 1995;376(6):379–84.

    Article  PubMed  CAS  Google Scholar 

  22. Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008;90(2):208–26.

    Article  PubMed  CAS  Google Scholar 

  23. Bromme D. Papain-like cysteine proteases. Curr Protoc Protein Sci. 2001; Chapter 21: Unit 21 2.

  24. Paris M, Brunet F, Markov GV, Schubert M, Laudet V. The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Dev Genes Evol. 2008;218(11–12):667–80.

    Article  PubMed  CAS  Google Scholar 

  25. Porazzi P, Calebiro D, Benato F, Tiso N, Persani L. Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol. 2009;312(1–2):14–23.

    Article  PubMed  CAS  Google Scholar 

  26. Fujita H. Functional morphology of the thyroid. Int Rev Cytol. 1988;113:145–85.

    Article  PubMed  CAS  Google Scholar 

  27. Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010;120(10):3421–31.

    Article  PubMed  CAS  Google Scholar 

  28. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des. 2007;13(4):387–403.

    Article  PubMed  CAS  Google Scholar 

  29. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    Article  PubMed  CAS  Google Scholar 

  30. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  PubMed  CAS  Google Scholar 

  31. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA. 1998;95(23):13453–8.

    Article  PubMed  CAS  Google Scholar 

  32. Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008;90(2):194–207.

    Article  PubMed  CAS  Google Scholar 

  33. Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem. 2010;391(8):923–35.

    Article  PubMed  CAS  Google Scholar 

  34. Yang M, Sun J, Zhang T, Liu J, Zhang J, Shi MA, Darakhshan F, Guerre-Millo M, Clement K, Gelb BD, Dolgnov G, Shi GP. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol. 2008;28(12):2202–8.

    Article  PubMed  CAS  Google Scholar 

  35. Bernstein HG, Bukowska A, Dobrowolny H, Bogerts B, Lendeckel U. Cathepsin K and schizophrenia. Synapse. 2007;61(4):252–3.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Q, Jia Y, Xiao Y. Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun. 2009;380(4):721–3.

    Article  PubMed  CAS  Google Scholar 

  37. Haeckel C, Krueger S, Buehling F, Broemme D, Franke K, Schuetze A, Roese I, Roessner A. Expression of cathepsin K in the human embryo and fetus. Dev Dyn. 1999;216(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  38. Dauth S, Sirbulescu RF, Rehders M, Avena L, Lerchl A, Saftig P, Jordans S, Brix K. The importance of mouse cathepsin K for the structural and functional integrity of the central nervous system. Book of abstracts/XIIth symposium on proteases, inhibitors and biological control. Portoroz, Slovenia, September 25–29, 2010. [Dolinar M, Stoka V, Turk B editors](Ljubljana: Jozef Stefan Institute; 2010).

  39. Podgorski I, Linebaugh BE, Sloane BF. Cathepsin K in the bone microenvironment: link between obesity and prostate cancer? Biochem Soc Trans. 2007;35(Pt 4):701–3.

    PubMed  CAS  Google Scholar 

  40. Brix K, Jordans S. Watching proteases in action. Nat Chem Biol. 2005;1(4):186–7.

    Article  PubMed  CAS  Google Scholar 

  41. Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu Rev Physiol. 1997;59:63–88.

    Article  PubMed  CAS  Google Scholar 

  42. Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000;10(8):316–21.

    Article  PubMed  CAS  Google Scholar 

  43. Reinheckel T, Deussing J, Roth W, Peters C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem. 2001;382(5):735–41.

    Article  PubMed  CAS  Google Scholar 

  44. Linke M, Jordans S, Mach L, Herzog V, Brix K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem. 2002;383(5):773–84.

    Article  PubMed  CAS  Google Scholar 

  45. Arampatzidou M, Rehders M, Dauth S, Yu DMT, Tedelind S, Brix K. Imaging of protease functions—current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol. 2011 (in press).

  46. Phillips ID, Black EG, Sheppard MC, Docherty K. Thyrotrophin, forskolin and ionomycin increase cathepsin B mRNA concentrations in rat thyroid cells in culture. J Mol Endocrinol. 1989;2(3):207–12.

    Article  PubMed  CAS  Google Scholar 

  47. Dunn AD. Stimulation of thyroidal thiol endopeptidases by thyrotropin. Endocrinology. 1984;114(2):375–82.

    Article  PubMed  CAS  Google Scholar 

  48. Petanceska S, Devi L. Sequence analysis, tissue distribution, and expression of rat cathepsin S. J Biol Chem. 1992;267(36):26038–43.

    PubMed  CAS  Google Scholar 

  49. Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol. 1983;97(3):607–17.

    Article  PubMed  CAS  Google Scholar 

  50. Hagemann S, Gunther T, Dennemarker J, Lohmuller T, Bromme D, Schule R, Peters C, Reinheckel T. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur J Cell Biol. 2004;83(11–12):775–80.

    Article  PubMed  CAS  Google Scholar 

  51. Ekholm R. Biosynthesis of thyroid hormones. Int Rev Cytol. 1990;120:243–88.

    Article  PubMed  CAS  Google Scholar 

  52. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 1992;72(3):667–97.

    PubMed  CAS  Google Scholar 

  53. Braun D, Wirth EK, Schweizer U. Thyroid hormone transporters in the brain. Rev Neurosci. 2010;21(3):173–86.

    Article  PubMed  CAS  Google Scholar 

  54. Podgorski I. Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem. 2009;1(1):21–34.

    Article  PubMed  CAS  Google Scholar 

  55. Lewiecki EM. Odanacatib, a cathepsin K inhibitor for the treatment of osteoporosis and other skeletal disorders associated with excessive bone remodeling. IDrugs. 2009;12(12):799–809.

    PubMed  CAS  Google Scholar 

  56. Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, Duong le T, Pickarski M, Percival MD. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol. 2008;73(1):147–56.

    Article  PubMed  CAS  Google Scholar 

  57. Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong le T, Falgueyret JP, Kimmel DB, Lamontagne S, Leger S, LeRiche T, Li CS, Masse F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18(3):923–8.

    Article  PubMed  CAS  Google Scholar 

  58. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, Hadji P, Hofbauer LC, Alvaro-Gracia JM, Wang H, Austin M, Wagman RB, Newmark R, Libanati C, Martin JS, Bone HG. Comparison of the effect of denosumab and alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24:153–61.

    Article  PubMed  CAS  Google Scholar 

  59. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  PubMed  CAS  Google Scholar 

  60. Stoch SA, Zajic S, Stone J, Miller DL, Van Dyck K, Gutierrez MJ, De Decker M, Liu L, Liu Q, Scott BB, Panebianco D, Jin B, Duong LT, Gottesdiener K, Wagner JA. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin Pharmacol Ther. 2009;86(2):175–82.

    Article  PubMed  CAS  Google Scholar 

  61. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25(5):937–47.

    PubMed  Google Scholar 

  62. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  63. Canalis E. New treatment modalities in osteoporosis. Endocr Pract. 2010;16(5):855–63.

    Article  PubMed  Google Scholar 

  64. Gogakos AI, Bassett JHD, Williams GR. Thyroid and bone. Arch Biochem Biophys. 2010;503(1):129–36.

    Article  PubMed  CAS  Google Scholar 

  65. Hofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010;162(6):1009–20.

    Article  PubMed  CAS  Google Scholar 

  66. Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med. 1988;318(10):599–602.

    Article  PubMed  CAS  Google Scholar 

  67. Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986;7(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  68. Vestergaard P, Weeke J, Hoeck HC, Nielsen HK, Rungby J, Rejnmark L, Laurberg P, Mosekilde L. Fractures in patients with primary idiopathic hypothyroidism. Thyroid. 2000;10(4):335–40.

    Article  PubMed  CAS  Google Scholar 

  69. Stamato FJ, Amarante EC, Furlanetto RP. Effect of combined treatment with calcitonin on bone densitometry of patients with treated hypothyroidism. Rev Assoc Med Bras. 2000;46(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  70. Segni M, Leonardi E, Mazzoncini B, Pucarelli I, Pasquino AM. Special features of Graves’ disease in early childhood. Thyroid. 1999;9(9):871–7.

    Article  PubMed  CAS  Google Scholar 

  71. Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, and fracture risk-a meta-analysis. Thyroid. 2003;13(6):585–93.

    Article  PubMed  Google Scholar 

  72. Bauer DC, Ettinger B, Nevitt MC, Stone KL. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134(7):561–8.

    PubMed  CAS  Google Scholar 

  73. Helas S, Goettsch C, Schoppet M, Zeitz U, Hempel U, Morawietz H, Kostenuik PJ, Erben RG, Hofbauer LC. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473–8.

    Article  PubMed  CAS  Google Scholar 

  74. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007;6(1):60–4.

    Article  PubMed  CAS  Google Scholar 

  75. Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol. 2011 [Epub ahead of print].

  76. Le Gall C, Bonnelye E, Clezardin P. Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care. 2008;2(3):218–22.

    Article  PubMed  Google Scholar 

  77. Xie L, Moroi Y, Hayashida S, Tsuji G, Takeuchi S, Shan B, Nakahara T, Uchi H, Takahara M, Furue M. Cathepsin K-upregulation in fibroblasts promotes matrigel invasive ability of squamous cell carcinoma cells via tumor-derived IL-1alpha. J Dermatol Sci. 2011;61(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  78. Buth H, Buttigieg PL, Ostafe R, Rehders M, Dannenmann SR, Schaschke N, Stark HJ, Boukamp P, Brix K. Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur J Cell Biol. 2007;86(11–12):747–61.

    Article  PubMed  CAS  Google Scholar 

  79. Boelaert K, Franklyn JA. Thyroid hormone in health and disease. J Endocrinol. 2005;187(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  80. Mikosch P, Kerschan-Schindl K, Woloszczuk W, Stettner H, Kudlacek S, Kresnik E, Gallowitsch HJ, Lind P, Pietschmann P. High cathepsin K levels in men with differentiated thyroid cancer on suppressive L-thyroxine therapy. Thyroid. 2008;18(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  81. Kung AW, Pun KK. Bone mineral density in premenopausal women receiving long-term physiological doses of levothyroxine. Jama. 1991;265(20):2688–91.

    Article  PubMed  CAS  Google Scholar 

  82. Bernal J. Thyroid hormones and brain development. Vitam Horm. 2005;71:95–122.

    Article  PubMed  CAS  Google Scholar 

  83. Heuer H. The importance of thyroid hormone transporters for brain development and function. Best Pract Res Clin Endocrinol Metab. 2007;21(2):265–76.

    Article  PubMed  CAS  Google Scholar 

  84. DeLong GR, Stanbury JB, Fierro-Benitez R. Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol. 1985;27(3):317–24.

    Article  PubMed  CAS  Google Scholar 

  85. Bauer M, Goetz T, Glenn T, Whybrow PC. The thyroid-brain interaction in thyroid disorders and mood disorders. J Neuroendocrinol. 2008;20(10):1101–14.

    Article  PubMed  CAS  Google Scholar 

  86. Horn S, Heuer H. Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol. 2010;315(1–2):19–26.

    Article  PubMed  CAS  Google Scholar 

  87. Messenger AG. Thyroid hormone and hair growth. Br J Dermatol. 2000;142(4):633–4.

    Article  PubMed  CAS  Google Scholar 

  88. Tiede S, Bohm K, Meier N, Funk W, Paus R. Endocrine controls of primary adult human stem cell biology: thyroid hormones stimulate keratin 15 expression, apoptosis, and differentiation in human hair follicle epithelial stem cells in situ and in vitro. Eur J Cell Biol. 2010;89(10):769–77.

    Article  PubMed  CAS  Google Scholar 

  89. Billoni N, Buan B, Gautier B, Gaillard O, Mahe YF, Bernard BA. Thyroid hormone receptor beta1 is expressed in the human hair follicle. Br J Dermatol. 2000;142(4):645–52.

    Article  PubMed  CAS  Google Scholar 

  90. Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996;42(1):135–9.

    PubMed  CAS  Google Scholar 

  91. van Beek N, Bodo E, Kromminga A, Gaspar E, Meyer K, Zmijewski MA, Slominski A, Wenzel BE, Paus R. Thyroid hormones directly alter human hair follicle functions: anagen prolongation and stimulation of both hair matrix keratinocyte proliferation and hair pigmentation. J Clin Endocrinol Metab. 2008;93(11):4381–8.

    Article  PubMed  CAS  Google Scholar 

  92. Thiboutot DM. Clinical review 74: dermatological manifestations of endocrine disorders. J Clin Endocrinol Metab. 1995;80(10):3082–7.

    Article  PubMed  CAS  Google Scholar 

  93. Ramot Y, Paus R, Tiede S, Zlotogorski A. Endocrine controls of keratin expression. Bioessays. 2009;31(4):389–99.

    Article  PubMed  CAS  Google Scholar 

  94. Safer JD, Crawford TM, Holick MF. A role for thyroid hormone in wound healing through keratin gene expression. Endocrinology. 2004;145(5):2357–61.

    Article  PubMed  CAS  Google Scholar 

  95. Buth H, Wolters B, Hartwig B, Meier-Bornheim R, Veith H, Hansen M, Sommerhoff CP, Schaschke N, Machleidt W, Fusenig NE, Boukamp P, Brix K. HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol. 2004;83(11–12):781–95.

    Article  PubMed  Google Scholar 

  96. Hodin RA, Meng S, Chamberlain SM. Thyroid hormone responsiveness is developmentally regulated in the rat small intestine: a possible role for the alpha-2 receptor variant. Endocrinology. 1994;135(2):564–8.

    Article  PubMed  CAS  Google Scholar 

  97. Brent GA. Tissue-specific actions of thyroid hormone: insights from animal models. Rev Endocr Metab Disord. 2000;1(1–2):27–33.

    Article  PubMed  CAS  Google Scholar 

  98. Plateroti M, Kress E, Mori JI, Samarut J. Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol. 2006;26(8):3204–14.

    Article  PubMed  CAS  Google Scholar 

  99. Kress E, Samarut J, Plateroti M. Thyroid hormones and the control of cell proliferation or cell differentiation: paradox or duality? Mol Cell Endocrinol. 2009;313(1–2):36–49.

    Article  PubMed  CAS  Google Scholar 

  100. Kress E, Rezza A, Nadjar J, Samarut J, Plateroti M. The thyroid hormone receptor-alpha (TRalpha) gene encoding TRalpha1 controls deoxyribonucleic acid damage-induced tissue repair. Mol Endocrinol. 2008;22(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  101. Ishizuya-Oka A, Shi YB. Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol. 2008;288(1–2):71–8.

    Article  PubMed  CAS  Google Scholar 

  102. Daher R, Yazbeck T, Jaoude JB, Abboud B. Consequences of dysthyroidism on the digestive tract and viscera. World J Gastroenterol. 2009;15(23):2834–8.

    Article  PubMed  CAS  Google Scholar 

  103. Shafer RB, Prentiss RA, Bond JH. Gastrointestinal transit in thyroid disease. Gastroenterology. 1984;86(5 Pt 1):852–5.

    PubMed  CAS  Google Scholar 

  104. Tenore A, Fasano A, Gasparini N, Sandomenico ML, Ferrara A, Di Carlo A, Guandalini S. Thyroxine effect on intestinal Cl-/HCO3- exchange in hypo- and hyperthyroid rats. J Endocrinol. 1996;151(3):431–7.

    Article  PubMed  CAS  Google Scholar 

  105. Buhling F, Peitz U, Kruger S, Kuster D, Vieth M, Gebert I, Roessner A, Weber E, Malfertheiner P, Wex T. Cathepsins K, L, B, X and W are differentially expressed in normal and chronically inflamed gastric mucosa. Biol Chem. 2004;385(5):439–45.

    Article  PubMed  Google Scholar 

  106. Mayer K, Schwartz S, Lentze MJ, Kalff JC, Brix K. Extracellular localization of intestinal cathepsins: implications for their actions during post-operative ileus. In: Vollmar B, editor. XLI congress of the european society for surgical research. Germany: Medimond International Proceedings; 2006. p. 63–6.

    Google Scholar 

Download references

Acknowledgment

This study was supported by Jacobs University Bremen, projects 2140/90033 and 2140/90140 to KBr, and by the Deutsche Forschungsgemeinschaft (DFG), grants BR 1308/7-1 to 7–3, and BR 1308/10-1 to KBr; SD receives a stipend from the School of Engineering and Science, Jacobs University Bremen. DY is supported by a grant from Deutscher Akademischer Austausch Dienst (DAAD—A/09/97458). The authors thank Dr. Paul Saftig (University of Kiel, Germany) for providing cathepsin K-deficient mice, and MSc Lakshmi, Settu (Jacobs University Bremen, Germany) for her contributions during the initial project phase.

Conflicts of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Brix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauth, S., Arampatzidou, M., Rehders, M. et al. Thyroid Cathepsin K: Roles in Physiology and Thyroid Disease. Clinic Rev Bone Miner Metab 9, 94–106 (2011). https://doi.org/10.1007/s12018-011-9093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-011-9093-7

Keywords

Navigation