Skip to main content
Log in

Testing Fundamental Physics with Degenerate Quantum Gases in Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The realization of a Bose Einstein condensate in the Bremen drop tower as achieved by the QUANTUS collaboration in 2007 has added a new field to microgravity research: the study of freely evolving degenerate quantum gases at largely extended evolution times. Here we give an outlook on some experiments that could be done with such ultra-cold quantum gases in this unique laboratory and on other microgravity platforms to study fundamental physics questions. In particular we consider experiments that could employ the increased precision of matter wave interferometers in microgravity to search for low-energy phenomena of quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro, J., Morales-Técotl, H.A., Urrutia, L.F.: Loop quantum gravity and light propagation. Phys. Rev., D 65, 103509 (2002)

    Article  MathSciNet  Google Scholar 

  • Amelino-Camelia, G.: Gravity-wave interferometers as quantum-gravity detectors. Nature 398, 216–218 (1999)

    Article  Google Scholar 

  • Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev., D 64, 036005 (2001)

    Article  Google Scholar 

  • Amelino-Camelia, G., et al.: Tests of quantum gravity from observations of big gamma-ray bursts. Nature 393, 763–765 (1998)

    Article  Google Scholar 

  • Amelino-Camelia, G., Lämmerzahl, C., Mercati, F., Tino, G.: Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms. Phys. Rev. Lett. 103, 171302 (2009)

    Article  Google Scholar 

  • Anderson, M.H., et al.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  Google Scholar 

  • Andrews, M.R., Townsend, C.G., Miesner, H.-J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Observation of interference between two Bose condensates. Science 275, 637 (1997)

    Article  Google Scholar 

  • Arvanitaki, A., et al.: How to test atom and neutron neutrality with atom interferometry. Phys. Rev. Lett. 100, 120407 (2008)

    Article  Google Scholar 

  • Bize, S., et al.: Cold atom clocks and applications. J. Phys. B 38, 449 (2005)

    Article  Google Scholar 

  • Bongs, K., et al.: Waveguide for Bose-Einstein condensates. Phys. Rev., A 63, 031602(R) (2001)

    Article  Google Scholar 

  • Bose, S.N.: Plancks Gesetz und Lichtquantenhypothese, Z. f. Physik 26, 178 (1924)

    Article  Google Scholar 

  • Breuer, H.-P., Göklü, E., Lämmerzahl, C.: Metric fluctuations and decoherence. Class. Quantum Gravity 26, 105012 (2009)

    Article  Google Scholar 

  • Chiow, S.-W., Herrmann, S., Chu, S., Müller, H.: Noise-immune conjugate large-area atom interferometers. Phys. Rev. Lett. 103, 050402 (2009)

    Article  Google Scholar 

  • Chu, S., et al.: Laser Trapping of Neutral Particles, p. 71. Scientific American (1992)

  • Damour, T., Esposito-Farese, G.: Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Damour, T., Polyakov, A.M.: The string dilation and a least coupling principle. Nucl. Phys., B 423, 532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relativ. Gravit. 26, 1171 (1996)

    Article  MathSciNet  Google Scholar 

  • Damour, T., Piazza, F., Veneziano, G.: Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89, 081 601 (2002a)

    Google Scholar 

  • Damour, T., Piazza, F., Veneziano, G.: Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev., D 66, 046 007 (2002b)

    MathSciNet  Google Scholar 

  • Einstein, A.: Quantentheorie des idealen einatomigen Gases. Sitzungber. d. kgl. Preuss. Akad. d. Wiss. 22, 256 (1924)

    Google Scholar 

  • Fixler, J.B., et al.: Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74 (2007)

    Article  Google Scholar 

  • Gähler, R., Klein, A.G., Zeilinger, A.: Neutron optical tests of nonlinear wave mechanics. Phys. Rev., A 23, 1611 (1981)

    Article  Google Scholar 

  • Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys., A 10, 145–166 (1995)

    Article  Google Scholar 

  • Göklü, E., Lämmerzahl, C.: Metric fluctuations and the weak equivalence principle. Class. Quantum Gravity 25, 105012 (2008)

    Article  Google Scholar 

  • Göklü, E., Lämmerzahl, C.: Metric fluctuations and decoherence. Class. Quantum Gravity 26, 225010 (2009)

    Article  Google Scholar 

  • Hogan, C.J.: arXiv:0905.4803v8 [gr-qc] (2010). Accessed 8 Jan 2010

  • Lämmerzahl, C.: The search for quantum gravity effects I. Appl. Phys., B 84, 551–562 (2006a)

    Article  Google Scholar 

  • Lämmerzahl, C.: The search for quantum gravity effects II. Appl. Phys., B 84, 563–573 (2006b)

    Article  Google Scholar 

  • Lämmerzahl, C., Lorek, D., Dittus, H.: Confronting Finsler space-time with experiment. Gen. Relativ. Gravit. 41, 1345 (2009)

    Article  MATH  Google Scholar 

  • Lamoreaux, S.K.: A review of the experimental tests of quantum mechanics. Int. J. Mod. Phys. 7, 6691, (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Lamporesi, G., et al.: Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 100, 050801 (2008)

    Article  Google Scholar 

  • Lewoczko-Adamczyk, W., et al.: Rubidium Bose-Einstein condensate under microgravity. Int. J. Mod. Phys. D 16, 2447–2454 (2007)

    Article  Google Scholar 

  • McGuirk, J.M., et al.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev., A 65, 033608 (2002)

    Article  Google Scholar 

  • Ng, J.Y.: Selected topics in Planck-scale physics. Mod. Phys. Lett. A 18, 1073–1098 (2003)

    Article  Google Scholar 

  • Pasquini, T., et al.: Quantum reflection from a solid surface at normal incidence. Phys. Rev. Lett. 93, 223201 (2004)

    Article  Google Scholar 

  • Pasquini, T., et al.: Low velocity quantum reflection of Bose-Einstein condensates. Phys. Rev. Lett. 97, 093201 (2006)

    Article  Google Scholar 

  • Peters, A., Chung, K., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)

    Article  Google Scholar 

  • Schlamminger, S., et al.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)

    Article  Google Scholar 

  • Scott, R., et al.: Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations. Phys. Rev. Lett. 95, 073201 (2005)

    Article  Google Scholar 

  • Shimizu, F., Fujita, J.: Giant quantum reflection of neon atoms from a ridged silicon surface. J. Phys. Soc. Jpn. 71, 5 (2002)

    Article  Google Scholar 

  • Shimony, A.: Proposed neutron interferometer test of some nonlinear variants of wave mechanics. Phys. Rev., A 20, 394 (1979)

    Article  Google Scholar 

  • Simsarian, J.E., et al.: Imaging the phase of an evolving Bose-Einstein condensate wave function. Phys. Rev. Lett. 85, 2040 (2000)

    Article  Google Scholar 

  • Stern, G., et al.: Light-pulse atom interferometry in microgravity. Eur. Phys. J., D 53, 353–357 (2009)

    Article  Google Scholar 

  • Sorrentino, F., et al.: SAI: a compact atom interferometer for future space missions. Jour. Micrograv. Res. (2010). arXiv:1003.1481. Accessed 7 March 2010

  • Stockton, J.K., Wu, X., Kasevich, M.A.: Bayesian estimation of differential interferometer phase. Phys. Rev., A 76, 033613 (2007)

    Article  Google Scholar 

  • Toboul, P., et al.: Comptes Rendus de l Academie des Sciences, Series IV. Physics 2, 1271–1286 (2001)

    Google Scholar 

  • Unnikrishnan, C.S., Gillies, G.T.: The electrical neutrality of atoms and of bulk matter. Metrologia 41, S125–S135 (2004)

    Article  Google Scholar 

  • Varoquax, G., et al.: How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle. New J. Phys. 11, 113010 (2008)

    Article  Google Scholar 

  • Vogel, A., et al.: Bose-Einstein condensates in microgravity. Appl. Phys., B 84, 663–667 (2006)

    Article  Google Scholar 

  • Wang, H.-T.C., Bingham, R., Mendoca, J.-T.: Quantum gravitational decoherence of matter waves. Class. Quantum Gravity 23, L59–65 (2006)

    Article  Google Scholar 

  • Wetterich, C.: Crossover quintessence and cosmological history of fundamental constants. Phys. Lett., B 561, 10 (2003a)

    Article  MATH  MathSciNet  Google Scholar 

  • Wetterich, C.: Probing quintessence with time variation of couplings. Astropart. Phys. 10, 2 (2003b)

    Google Scholar 

  • Wicht, A., et al.: A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr., T 102, 82 (2002)

    Article  Google Scholar 

  • Wolf, P., Chapelet, F., Bize, S., Clairon, A.: Cold atom clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett. 96, 060801 (2006)

    Article  Google Scholar 

  • Yu, I.A., et al.: Evidence for universal quantum reflection of hydrogen from liquid He. Phys. Rev. Lett. 71, 1589 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, S., Göklü, E., Müntinga, H. et al. Testing Fundamental Physics with Degenerate Quantum Gases in Microgravity. Microgravity Sci. Technol. 22, 529–538 (2010). https://doi.org/10.1007/s12217-010-9227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9227-4

Keywords

Navigation