Skip to main content
Log in

Delineating subsurface heterogeneity at a loop of River Steinlach using geophysical and hydrogeological methods

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Stratigraphic heterogeneity is a key controlling factor for flow and transport in groundwater systems. In this case study, we have combined two- and three-dimensional images of electric resistivity with hydrogeological data to delineate such stratigraphic heterogeneity at a loop of River Steinlach close to Tübingen, Germany, where we estimated spatially varying aquifer parameters using established evaluation techniques. We developed a three-layer stratigraphic model consisting of heterogeneous sandy gravel overlain by a fine alluvium including top soil, and underlain by sandstone weathered at its top. The sandy gravel makes up the aquifer unit while we interpret the sandstone as aquitard. We classified the area into two stratigraphic segments based on resistivity data. The Southern segment consists of a thicker alluvium where the aquifer material contains more clay than in the Northern segment. Two different stratigraphic structures were also delineated at the Southern and Northern segments, respectively. These structures are visible in inversion results as low-resistivity features trending in the SE–NW in the Southern segment and NE–NW in the Northern segment. Both structures may be previous flow paths of River Steinlach, and the low permeability material overlying them may impair flow exchange in the area. We performed slug and pumping tests to estimate the hydraulic conductivity (K) of the aquifer. The K distributions show slight variation with higher values obtained at wells within the Northern segment and close to the river bank. A qualitative comparison of measured hydraulic conductivities with the resistivity distribution shows good agreement of the spatial patterns. The stratigraphic and hydraulic heterogeneities delineated in this work are important for experimental and modeling studies of flow, transport, and hyporheic exchange at the site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed S, de Marsily G, Talbot A (1988) Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water 26:78–86. doi:10.1111/j.1745-6584.1988.tb00370.x

    Article  Google Scholar 

  • Aizebeokhai AP, Olayinka AI, Singh VS (2010) Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. J Environ Earth Sci. p 1481. doi:10.1007/s12665-010-0474-z

  • Al-Ajmi H, Hinderer M, Keller M, Rausch R, Blum P, Bohnsack D (2011) The role of outcrop analogue studies in for the characterization of aquifer properties. Int J Water Resour Arid Environ 1:48–54

    Google Scholar 

  • Batayneh AT (2009) A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters. J Water Resour Prot 1:400–407

    Article  Google Scholar 

  • Binley A, Kemna A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Netherlands, pp 129–156

    Chapter  Google Scholar 

  • Bohling GC, Zhan X, Butler JJ Jr, Zheng L (2002) Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities. Water Resour Res 38:1324. doi:10.1029/2001wr001176

    Article  Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428. doi:10.1029/WR012i003p00423

    Article  Google Scholar 

  • Bowling JC, Rodriguez AB, Harry DL, Zheng C (2005) Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Ground Water 43:890–903. doi:10.1111/j.1745-6584.2005.00103.x

    Google Scholar 

  • Bowling JC, Zheng C, Rodriguez AB, Harry DL (2006) Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer. J Contam Hydrol 85:72–88. doi:10.1016/j.jconhyd.2006.01.006

    Article  Google Scholar 

  • Bowling JC, Harry DL, Rodriguez AB, Zheng C (2007) Integrated geophysical and geological investigation of a heterogeneous fluvial aquifer in Columbus Mississippi. J Appl Geophys 62:58–73. doi:10.1016/j.jappgeo.2006.08.003

    Article  Google Scholar 

  • Butler JJ (2005) Hydrogeological methods for estimation of spatial variations in hydraulic conductivity. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Netherlands, pp 23–58

    Chapter  Google Scholar 

  • Butler JJ, Healey JM (1998) Relationship between pumping-test and slug-test parameters: scale effect or artifact? Ground Water 36:305–312. doi:10.1111/j.1745-6584.1998.tb01096.x

    Article  Google Scholar 

  • Cardenas MB, Markowski MS (2011) Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river. American Chemical Society, Washington, DC

    Google Scholar 

  • Cardiff M, Barrash W (2011) 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resour Res 47:W12518. doi:10.1029/2010wr010367

    Article  Google Scholar 

  • Cassiani G, Medina MA (1997) Incorporating Auxiliary Geophysical Data into Ground-Water Flow Parameter Estimation. Ground Water 35:79–91. doi:10.1111/j.1745-6584.1997.tb00063.x

    Article  Google Scholar 

  • Chambers JE, Wilkinson PB, Weller AL, Meldrum PI, Ogilvy RD, Caunt S (2007) Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography: a case history from the East Pennine Coalfield, UK. J Appl Geophys 62:324–337. doi:10.1016/j.jappgeo.2007.03.004

    Article  Google Scholar 

  • de Groot-Hedlin CD, Constable SC (1990) Occam’s inversion to generate smooth, twodimensional models from magnetotelluric data. Geophysics 55(12):1613–1624

    Article  Google Scholar 

  • Dietrich P, Fechner T, Whittaker J, Teutsch G (1998) An integrated hydrogeophysical approach to subsurface characterization. Groundwater quality: remediation and protection. IAHS, Tuebingen, Germany

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Inc., Upper Saddle River

    Google Scholar 

  • Frohlich RK, Kelly WE (1988) Estimates of specific yield with the geoelectric resistivity method in glacial aquifers. J Hydrol 97:33–44. doi:10.1016/0022-1694(88)90064-9

    Article  Google Scholar 

  • Grathwohl P, Rügner H, Wöhling T, Osenbrück K, Schwientek M, Gayler S, Wollschläger U, Selle B, Pause M, Delfs J-O, Grzeschik M, Weller U, Ivanov M, Cirpka OA, Maier U, Kuch B, Nowak W, Wulfmeyer V, Warrach-Sagi K, Streck T, Attinger S, Bilke L, Dietrich P, Fleckenstein JH, Kalbacher T, Kolditz O, Rink K, Samaniego L, Vogel H-J, Werban U, Teutsch G (2013) Catchments as reactors—a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2281-7

  • Heigold PC, Gilkeson RH, Cartwright K, Reed PC (1979) Aquifer transmissivity from surficial electrical methods. Ground Water 17:338–345. doi:10.1111/j.1745-6584.1979.tb03326.x

    Article  Google Scholar 

  • Hubbard SS, Rubin Y (2000) Hydrogeological parameter estimation using geophysical data: a review of selected techniques. J Contam Hydrol 45:3–34. doi:10.1016/s0169-7722(00)00117-0

    Article  Google Scholar 

  • Hubbard SS, Chen J, Peterson J, Majer EL, Williams KH, Swift DJ, Mailloux B, Rubin Y (2001) Hydrogeological characterization of the south oyster bacterial transport site using geophysical data. Water Resour Res 37:2431–2456. doi:10.1029/2001wr000279

    Article  Google Scholar 

  • Hyndman DW, Harris JM, Gorelick SM (2000) Inferring the relation between seismic slowness and hydraulic conductivity in heterogeneous aquifers. Water Resour Res 36:2121–2132. doi:10.1029/2000wr900112

    Article  Google Scholar 

  • Kelly WE, Frohlich RK (1985) Relations between aquifer electrical and hydraulic properties. Ground Water 23:182–189. doi:10.1111/j.1745-6584.1985.tb02791.x

    Article  Google Scholar 

  • Kosinski WK, Kelly WE (1981) Geoelectric soundings for predicting aquifer properties. Ground Water 19:163–171. doi:10.1111/j.1745-6584.1981.tb03455.x

    Article  Google Scholar 

  • Koster JW, Harry DL (2005) Effects of water saturation on a resistivity survey of an unconfined fluvial aquifer in Columbus, MS. Hydrol Days 2005:111–120

    Google Scholar 

  • Loke MH (2011) Tutorial: 2D and 3D electrical imaging surveys, edited. p 172. http://www.geoelectrical.com

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  • Mastrocicco M, Vignoli G, Colombani N, Zeid N (2010) Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environ Earth Sci 61:311–322. doi:10.1007/s12665-009-0344-6

    Article  Google Scholar 

  • Maurer H, Friedel S, Jaeggi D (2009) Characterization of a coastal aquifer using seismic and geoelectric borehole methods. Near Surf Geophys 7:353–366

    Google Scholar 

  • Mazac O, Kelly WE, Landa I (1987) Surface geoelectrics for groundwater pollution and protection studies. J Hydrol 93:277–294. doi:10.1016/0022-1694(87)90100-4

    Article  Google Scholar 

  • Mazác O, Kelly WE, Landa I (1985) A hydrogeophysical model for relations between electrical and hydraulic properties of aquifers. J Hydrol 79:1–19. doi:10.1016/0022-1694(85)90178-7

    Article  Google Scholar 

  • Mucha I, Bansky LU, Hlavaty Z, Rodak D (2006) Impact of riverbed clogging–colmation: on groundwater. In: Hubbs SA (ed) Riverbank filtration hydrology: impacts on system capacity and water quality. Springer, Netherlands, pp 43–72

    Chapter  Google Scholar 

  • Niwas S, de Lima OAL (2003) Aquifer parameter estimation from surface resistivity data. Ground Water 41:94–99. doi:10.1111/j.1745-6584.2003.tb02572.x

    Article  Google Scholar 

  • Osenbrück K, Wöhling T, Lemke D, Rohrbach N, Schwientek M, Leven C, Callisto Alvarez C, Taubald H, Cirpka OA (2013) Lateral hyporheic exchange fluxes at the Steinlach Test Site, Germany derived from hydraulic, chemical and isotopic monitoring. Environ Earth Sci 69(2). doi:10.1007/s12665-012-2155-4

  • Pollock D, Cirpka OA (2008) Temporal moments in geoelectrical monitoring of salt tracer experiments. Water Resour Res 44:W12416. doi:10.1029/2008wr007014

    Article  Google Scholar 

  • Pollock D, Cirpka OA (2010) Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments. Water Resour Res 46:W07501. doi:10.1029/2009wr008575

    Article  Google Scholar 

  • Pollock D, Cirpka OA (2012) Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography. Water Resour Res 48:W01505. doi:10.1029/2011wr010779

    Article  Google Scholar 

  • Purvance DT, Andricevic R (2000a) Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales. Water Resour Res 36:2915–2924. doi:10.1029/2000wr900187

    Article  Google Scholar 

  • Purvance DT, Andricevic R (2000b) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913. doi:10.1029/2000wr900165

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, England, UK, p 778

    Google Scholar 

  • Rovey CW, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33:769–780. doi:10.1111/j.1745-6584.1995.tb00023.x

    Article  Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–464

    Article  Google Scholar 

  • Sinha R, Israil M, Singhal D (2009) A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers. Hydrogeol J 17:495–503. doi:10.1007/s10040-008-0424-9

    Article  Google Scholar 

  • Springer RK, Gelhar LW (1991) Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts, US Geol Surv Water Res Invest Rep 91-4034, pp 36–40

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524

    Article  Google Scholar 

  • Vereecken H, Kemna A, Münch H-M, Tillmann A, Verweerd A (2006) Aquifer characterization by geophysical methods. Encyclopedia of hydrological sciences. Wiley, New York

    Google Scholar 

  • Ward AS, Gooseff MN, Singha K (2010) Imaging hyporheic zone solute transport using electrical resistivity. Hydrol Process 24:948–953. doi:10.1002/hyp.7672

    Article  Google Scholar 

  • Yeh TCJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095–2105. doi:10.1029/2000wr900114

    Article  Google Scholar 

  • Yeh TCJ, Liu S, Glass RJ, Baker K, Brainard JR, Alumbaugh D, LaBrecque D (2002) A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resour Res 38:1278. doi:10.1029/2001wr001204

    Article  Google Scholar 

  • Zhou B, Dahlin T (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying EAGE. Near Surf Geophys 1:105–117

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dennis Lemke, Marc Schwientek, Karsten Osenbrück, Thomas Woehling and the members of the Water and Earth System Science (WESS) competence cluster, Tübingen, for their support during the field work and provision of other logistics to ensure the successful completion of this work. Financial support was given by the German Federal Ministry of Education and Research (BMBF) within the “Geotechnologien” program, subprogram “Tomography of the Earth’s Crust”, project “TOMOME: tomographic methods in hydrogeology”. We also want to thank three anonymous reviewers for providing valuable comments that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kennedy O. Doro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doro, K.O., Leven, C. & Cirpka, O.A. Delineating subsurface heterogeneity at a loop of River Steinlach using geophysical and hydrogeological methods. Environ Earth Sci 69, 335–348 (2013). https://doi.org/10.1007/s12665-013-2316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2316-0

Keywords

Navigation