Skip to main content
Log in

Combined sewer overflows, sediment accumulation and element patterns of river bed sediments: a quantitative study based on mixing models of composite fingerprints

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Stormwater runoff from urban areas and subsequent stormwater-induced effluents from sewer systems may deteriorate the quality of the receiving water sediments by emitting particulate matter and associated pollutants. However, the relevance of stormwater and combined sewer effluents for the pollution of bed sediments was not yet quantified. Therefore, we applied a multivariate mixing model of composite fingerprints to investigate how much stormwater effluent may contribute to the accumulation of fines and associated pollutants in the bed sediment of the Bode River, Germany. In our study, stormwater and combined sewer effluents contribute about 10 % of the fines accumulated in the bed sediment. As stormwater overflow fines are a major carrier of C, N, P, Cu and Zn, up to 40 % of these pollutants in the bed sediment originate from stormwater effluents. Especially N and Zn have to be seen critically because high nutrient concentrations trigger excessive macrophyte growth within the studied river stretch and Zn contents exceed German sediment quality standards (LAWA 1998) in the bed sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bissinger V, Kolditz O (2008) Helmholtz interdisciplinary graduate school for environmental research (HIGRADE). GAIA Ecol Perspect Sci Soc 17(1):71–73

    Google Scholar 

  • Blumensaat F, Wolfram M, Krebs P (2012) Sewer model development under minimum data requirements. Environ Earth Sci 65(5):1427–1437. doi:10.1007/s12665-011-1146-1

    Article  Google Scholar 

  • Borchardt D, Pusch M (2009) An integrative, interdisciplinary research approach for the identification of patterns, processes and bottleneck functions of the hyporheic zone of running waters. Adv Limnol 61:1–7

    Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshwat Biol 37:1–33

    Article  Google Scholar 

  • Collins AL, Walling DE (2002) Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. J Hydrol 261:218–244

    Article  Google Scholar 

  • Collins AL, Walling DE, Leeks GJL (1997) Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 29:1–27

    Article  Google Scholar 

  • Collins AL, Walling DE, Leeks GJL (1998) Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers. Earth Surf Process Landf 23:31–52

    Article  Google Scholar 

  • Collins AL, Walling DE, Webb L, King P (2010) Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma 155:249–261

    Article  Google Scholar 

  • David T, Krebs P, Borchardt D, von Tümpling W (2011) Element patterns for particulate matter in stormwater effluent. Water Sci Technol 63(12):3013–3019. doi:10.2166/wst.2011.606

    Article  Google Scholar 

  • Davide V, Pardos M, Diserens J, Ugazio G, Thomas R, Dominik J (2003) Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions. Water Res 37:2847–2864

    Article  Google Scholar 

  • Davis CM, Fox JF (2009) Sediment fingerprinting: review of the method and future improvements for allocating nonpoint source pollution. J Environ Eng 135:490–504

    Article  Google Scholar 

  • Devesa-Rey R, Barral MT (2012) Allochthonous versus autochthonous naturally occurring organic matter in the Anllons river bed sediments (Spain). Environ Earth Sci 66(3):773–782. doi:10.1007/s12665-011-1286-3

    Article  Google Scholar 

  • Ding HJ, Ji HB (2010) Application of chemometric methods to analyze the distribution and chemical fraction patterns of metals in sediment from a metropolitan river. Environ Earth Sci 61(3):641–657. doi:10.1007/s12665-009-0379-8

    Article  Google Scholar 

  • Fox JF, Papanicolaou AN (2008) An un-mixing model to study watershed erosion processes. Adv Water Resour 31:96–108

    Article  Google Scholar 

  • Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ Sci Technol 7:235–240

    Article  Google Scholar 

  • Furrer R (2000) Die Belastung der Elbe (Contamination of the Elbe River), Vol. 2: Hintergrundbelastungen der deutschen Nebenflüsse (Background contaminations of German tributaries). Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany

  • Gagnon C, Saulnier I (2003) Distribution and fate of metals in the dispersion plume of a major municipal effluent. Environ Pollut 124:47–55

    Article  Google Scholar 

  • Grathwohl P, Ruegner H, Wöhling T et al (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2281-7

  • Hartwig M, Theuring P, Rode M, Borchardt D (2012) Suspended sediments in the Kharaa river catchment (Mongolia) and its impact on hyporheic zone functions. Environ Earth Sci 65(5):1535–1546. doi:10.1007/s12665-011-1198-2

    Article  Google Scholar 

  • Hnatuková P, Benesová L, Komínková D (2009) Impact of urban drainage on metal distribution in sediments of urban streams. Water Sci Technol 59:1237–1246

    Article  Google Scholar 

  • Husson F, Josse J, Le S, Mazet J (2010) FactoMineR: multivariate exploratory data analysis and data mining with R [online]. http://CRAN.R-project.org/package=FactoMineR [Accessed October 19, 2010]

  • LAWA (1998) Zielvorgaben zum Schutz oberirdischer Binnengewässer (Target values to protect inland surface waters), Vol. 2: Ableitung und Erprobung von Zielvorgaben zum Schutz oberirdischer Binnengewässer für die Schwermetalle Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber und Zink (Deduction and testing of target values to protect inland surface waters with respect to the heavy metals lead, cadmium, chromium, copper, nickel, mercury and zinc). Kulturbuchverlag, Berlin

  • Lisle TE (1989) Sediment transport and resulting deposition in spawning gravels and North Coastal California. Water Resour Res 25:1303–1319

    Article  Google Scholar 

  • Ministry of agriculture and the environment of the State Saxony-Anhalt (2005) Landesbericht über die Bestandsaufnahme der Gewässer nach Artikel 5 Wasserrahmenrichtlinie (State report on the inventory of waters according to Article 5 of the water framework directive) [online]. http://www.asp.sachsen-anhalt.de/wrrl/c-bericht/download/C_Bericht_LSA.pdf [Accessed July 11, 2011]

  • Motha JA, Wallbrink PJ, Hairsine PB, Grayson RB (2002) Tracer properties of eroded sediment and source material. Hydrol Process 16:1983–2000

    Article  Google Scholar 

  • Motha JA, Wallbrink PJ, Hairsine PB, Grayson RB (2003) Determining the sources of suspended sediment in a forested catchment in southeastern Australia. Water Resour Res 39:1056

    Article  Google Scholar 

  • Nasrabadi T, Bidhendi GN, Karbassi AR, Grathwohl P, Mehrdadi N (2011) Impact of major organophosphate pesticides used in agriculture to surface water and sediment quality (Southern Caspian Sea basin, Haraz River). Environ Earth Sci 63(4):873–883. doi:10.1007/s12665-010-0757-2

    Article  Google Scholar 

  • Okubo K, Khan MSA, Hassan MQ (2010) Hydrological processes of adsorption, sedimentation, and infiltration into the lake bed during the 2004 urban flood in Dhaka city. Bangladesh Environ Earth Sci 60(1):95–106. doi:10.1007/s12665-009-0172-8

    Article  Google Scholar 

  • R Development Core Team (2009) R: A Language and environment for statistical computing [online]. R foundation for statistical computing. http://www.R-project.org [Accessed October 19, 2010]

  • Richter S, Völker J, Borchardt D, Mohaupt V (2013): Integrated water resources management and implementation of the EU-water framework directive: lessons learnt and future perspectives from the experience in Germany. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2399-7

  • Ruegner H, Schwientek M, Beckingham B, Kuch B, Grathwohl P (2013): Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ Earth Sci 69 (2). doi:10.1007/s12665-013-2307-1

  • Sear DA (1993) Fine sediment infiltration into gravel spawning beds within a regulated river experiencing floods: ecological implications for salmonids. Regul River 8:373–390

    Article  Google Scholar 

  • Sinex S, Helz G (1981) Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ Geol 3:315–323

    Article  Google Scholar 

  • Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151

    Article  Google Scholar 

  • Viers J, Dupréa B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868

    Article  Google Scholar 

  • Walling DE, Collins AL, Stroud RW (2008) Tracing suspended sediment and particulate phosphorus sources in catchments. J Hydrol 350:274–289

    Article  Google Scholar 

  • Walling DE, Woodward JC, Nicholas AP (1993) A multi-parameter approach to fingerprinting suspended-sediment sources. Proceedings of Yokohama symposium. In: Peters NE, Hoehn E, Leibundgut C, Tase N, Walling DE (eds) Tracers in Hydrology, pp 329–337. IAHS Press, Wallingford, Oxfordshire, UK

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183:198–200

    Article  Google Scholar 

Download references

Acknowledgments

We thank the WAZV “Bode-Wipper” for their support. Funding by the Helmholtz Impulse and Networking Fund through the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE) (Bissinger and Kolditz 2008) and Terrestrial Environmental Observatoria (TERENO) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Borchardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, T., Borchardt, D., von Tümpling, W. et al. Combined sewer overflows, sediment accumulation and element patterns of river bed sediments: a quantitative study based on mixing models of composite fingerprints. Environ Earth Sci 69, 479–489 (2013). https://doi.org/10.1007/s12665-013-2447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2447-3

Keywords

Navigation