Skip to main content
Log in

Design and integration of a GIS-based data model for the regional hydrologic simulation in Meijiang watershed, China

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents the design and integration of a GIS-based data model for the regional hydrologic simulation in the Meijiang watershed, China. Hydrologic systems (HS) require integration of data and models simulating different processes. Here, an object-oriented approach using Unified Modeling Language (UML) is introduced, which supports the development of GIS-based Geodatabase model—GeoHydro/DataBase (GH/DB). Spatial data, such as basins, stream network, and observation stations are stored in the feature classes. The time series and their attributes are included in the tables. Relationship classes are used to link associated objects. The new development within the scientific program OpenGeoSys (OGS) is the integration of GH/DB into the numerical simulations. The graphical user interface is implemented for the pre- and post-processing of the simulation. As for the case study, a regional hydrologic model is developed in the Meijiang watershed area for the understanding of water infiltration from surface into groundwater via soil layer with various time scales. The integration of databases and modeling tool represents the comprehensive hydrosystems and thus it is a useful tool to understand the different processes and interactions between the related hydrological compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CASE:

Computer-aided software engineering

DEM:

Digital elevation model

DLL:

Dynamic linked library

GDAL:

Geospatial data abstraction library

GH/DB:

GeoHydro/DataBase

GUI:

Graphical user interface

HS:

Hydrologic systems

MPI:

Message passing interface

OGS:

OpenGeoSys

UML:

Unified Modeling Language

XMI:

XML metadata interchange

References

  • Abbott MB, Babovic VM, Cunge JA (2001) Towards the hydraulics of the hydroinformatics era. J Hydraul Res 39(4):339–349

    Article  Google Scholar 

  • Arnold JG, Sirinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment, part 1-model development. J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42(1):W01420

    Google Scholar 

  • Beinhorn M, Dietrich P, Kolditz O (2005) 3-D numerical evaluation of density effects on tracer tests. J Contam Hydrol 81(1–4):89–105

    Article  Google Scholar 

  • Bertoldi G, Tamanini D, Zanotti F, Rigon R (2004) GEOtop, a hydrological Balance model, technical description and programs guide (V0.875). Department of Civil and Environmental Engineering, University of Trento

  • Bilke L, Fischer T, Helbig C et al (2014) VISLAB—laboratory for scientific visualization. Environ Earth Sci 72:3881–3899. doi:10.1007/s12665-014-3785-5

    Article  Google Scholar 

  • Chen C (2006) Integrating GIS Methods for the Analysis of GeoSystems. PhD thesis. In der Reihe C Hydro-, Ingenieur- und Umweltgeologie der Tübinger Geowissenschaftlichen Arbeiten (TGA), Uni Tübingen

  • Chen C, Sawarieh A, Kalbacher T, Beinhorn M, Wan W, and Kolditz O (2005) A GIS based 3-D hydrosystem model of the Zarqa Ma’In-Jiza areas in Central Jordan. J Environ Hydrol Vol. 13, Paper 4

  • Chen C, Khayat S, Hötzl H, Geyer S, Ali W, Kolditz O (2008) A GIS based hydrosystem model for the Jericho Plain, Palestine. In: Hötzl H, Möller P, Rosenthal E (eds) The water of the Jordan valley: scarcity and deterioration of groundwater and its impact on the regional development. Springer, Berlin, pp 326–349

    Google Scholar 

  • Chen C, Haerter JO, Hagemann S, Piani C (2011) On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle. Geophys Res Lett 38:L20403. doi:10.1029/2011GL049318

    Google Scholar 

  • Chen M, Lin H, Hu MY, He L, Zhang CX (2013) Real geographic scenario based virtual social environment: integrate geography with social research. Environ Plan B-Plan Des 40(6):1103–1121

    Article  Google Scholar 

  • Chen C, Hagemann S, Liu J (2014) Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environ Earth Sci. doi:10.1007/s12665-014-3782-8

    Google Scholar 

  • Chen C, Börnick H, Cai QH, Dai XH, Jähnig SC, Kong YL, Krebs P, Kuenzer C, Kunstmann H, Liu Y, Nixdorf E, Pang ZH, Rode M, Schueth C, Song YH, Yue TX, Zhou KX, Zhang J, Kolditz O (2015) Challenges and opportunities of German-Chinese cooperation in water science and technology. Environ Earth Sci 73:4861–4871. doi:10.1007/s12665-015-4149-5

    Article  Google Scholar 

  • Deepika B, Avinash K, Jayappa KS (2013) Integration of hydrological factors and demarcation of groundwater prospect zones: insights from remote sensing and GIS techniques. Environ Earth Sci 70(3):1319–1338

    Article  Google Scholar 

  • Delfs J-O, Blumensaat F, Wang W, Krebs P, Kolditz O (2011) Coupling hydro-geological with surface runoff model in a Poltva case study in Western Ukraine. Environ Earth Sci 65(5):1439–1457

    Article  Google Scholar 

  • Donigian AS, Imhoff J (2006) History and evolution of watershed modeling derived from the Stanford Watershed Model. In: Singh VP, Frevert D (eds) Watershed Models. CRC Press, Boca Raton

    Google Scholar 

  • Du Y, Delfs J-O, Kalbus E et al (2009) A regional hydrological soil model for large-scale applications: computational concept and implementation. J Environ Hydrol. Paper 7, Volume 17

  • Fu YC, Zhao YL, Zhang YR, Guo TS, He ZW, Chen JY (2013) GIS and ANN-based spatial prediction of DOC in river networks: a case study in Dongjiang, Southern China. Environ Earth Sci 68(5):1495–1505

    Article  Google Scholar 

  • Goodchild MF, Parks BO, Steyaert LT (1993) In geographic information systems and environmental modeling. Oxford University Press, New York, pp 231–237

    Google Scholar 

  • Goodchild MF, Parks BO, Steyaert LT (1996) In GIS World Books. Fort Collins Co 1996:154–206

    Google Scholar 

  • Grathwohl P, Rügner H, Wöhling T et al (2013) Catchments as reactors—a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2):317–334. doi:10.1007/s12665-013-2281-7

    Article  Google Scholar 

  • Gunduz O, Aral MM (2005) River networks and groundwater flow: simultaneous solution of a coupled system. J Hydrol 301(1–4):216–234

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey Modular Ground-water Model—User Guide to Modularization Concepts and the Groundwater Flow Process. Tech. Rep. 00-92. US Geological Survey. Open-File Report

  • He C, Liu J, Li J, Liang X, Chen X-P, Lei Y-R, Zhu D (2013) Spatial distribution, source analysis, and ecological risk assessment of DDTs in typical wetland surface soils of Poyang Lake. Environ Earth Sci 68(4):1135–1141

    Article  Google Scholar 

  • Kalbacher T, Delfs JO, Shao H et al (2012) The IWAS-ToolBox: software Coupling for an Integrated Water Resources Management. Environ Earth Sci 65(5):1367–1380. doi:10.1007/s12665-011-1270-y

    Article  Google Scholar 

  • Kolditz O, De Jonge J (2004) Non-isothermal two-phase flow in low-permeable porous media. Comput Mech 33(5):345–364

    Article  Google Scholar 

  • Kolditz O, Delfs JO, Bürger CM, Beinhorn M, Park C-H (2008) Numerical analysis of coupled hydrosystems based on an object-oriented compartment approach. J Hydroinformatics 10(3):227–244. doi:10.2166/hydro.2008.003

    Article  Google Scholar 

  • Kolditz O, Rink K, Shao HB, Kalbacher T, Zacharias S, Kunkel R, Dietrich P (2012a) International viewpoint and news: data and modelling platforms in environmental Earth sciences. Environ Earth Sci 66:1279–1284. doi:10.1007/s12665-012-1661-8

    Article  Google Scholar 

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu N, Xie M, Xu W, Zehner B (2012b) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599. doi:10.1007/s12665-012-1546-x

    Article  Google Scholar 

  • Krause P, Kralisch S, Flügel WA (2005) Model integration and development of modular modelling systems. J Adv Geosci 4:1–2

    Article  Google Scholar 

  • Lin H, Chen M, Lu GN, Zhu Q, Gong JH, You X, Wen YN, Xu BL, Hu MY (2013) Virtual geographic environments (VGEs): a new generation of geographic analysis tool. Earth Sci Rev 126:74–84

    Article  Google Scholar 

  • Maidment DR (2002) Arc hydro GIS for water resources. ESRI Press, Redlands

    Google Scholar 

  • Maxwell RM, Putti M, Meyerhoff S et al (2014) Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour Res. doi:10.1002/2013WR013725

    Google Scholar 

  • McDermott CI, Walsh R, Mettier R, Kosakowski G, Kolditz O (2009) Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput Geosci 13(3):349–361

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxton KE (l982) Soil water characteristics. Trans ASAE 25(5):13l6–1328

  • Rawls WJ, Ahuja LR, Brakensiek DL Shirmohammadi A (1992) Infiltration and soil water movement. Chapter. 5. In: Handbook of Hydrology, DR Maidment (Ed.), McGraw-Hill, Inc., New York, NY, pp 5.1–5.51

  • Rawls WJ, Gimenez D, Grossman R (1998) Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Trans ASAE 41(4):983–988

    Article  Google Scholar 

  • Reitsma F, Albrecht J (2005) Implementing a new data model for simulating processes. Int J Geogr Inf Sci 19(10):1073–1090

    Article  Google Scholar 

  • Reitsma F, Dubayah R (2007) Simulating watershed runoff with a new data model. Hydrol Process 21(18):2447–2457

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Rink K, Kalbacher T, Kolditz O (2012) Visual data management for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi:10.1007/s12665-011-1230-6

    Article  Google Scholar 

  • Saxton KE, Willey PH (2006) The SPAW model for agricultural field and pond hydrologic simulation. In: Singh VP, Frevert DK (eds.) Watershed models. Taylor & Francis, pp 401–435

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil water characteristics from texture. Soil Sci Soc Amer J 50(4):1031–1036

    Article  Google Scholar 

  • Scheidegger AE (2004) Morphotectonics. Springer, Berlin

    Book  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Sreedevi PD, Sreekanth PD, Khan HH, Ahmed S (2013) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70:839–848

    Article  Google Scholar 

  • Strassberg G, Maidment DR (2004) Arc hydro groundwater data model, geographic information systems in water resources III. AWRA Spring Specialty Conference, Nashville, May. American Water Resources Association, Middleburg, pp 17–19

    Google Scholar 

  • Sudicky EA, Jones JP, McLaren RG, Brunner DS, VanderKwaak JE (2000) A fully-coupled model of surface and subsurface water flow: model overview and application to the laurel creek watershed. In: Balkema, A.A. (Ed.), Computational Methods in Water Resources. No. 2, pp. 1093–1099

  • Wang W, Rutquist J, Görke U-J, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of Richards` and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207

    Article  Google Scholar 

  • Wasy Software, 2004. IFMMIKE11 1.1, User Manual. Wasy GmbH, Institute for Water Resources Planning and System Research

  • Wen YN, Chen M, Lu GN, Lin H (2013) Prototyping an open environment for sharing geographical analysis models on cloud computing platform. Int J Digit Earth 6(4):356–382

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Woldenberg MJ (1969) Spatial Order in Fluvial Systems: horton’s Laws Derived from Mixed Hexagonal Hierarchies of Drainage Basin Areas. Geol Soc Am Bull 80(1):97–112

    Article  Google Scholar 

  • Xie ML, Bauer S, Kolditz O, Nowak T, Shao H (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147

    Article  Google Scholar 

Download references

Acknowledgments

I would like to appreciate Chinese and German partners who are actively involved for the research work. Special thanks are given to Jiangxi Normal University for the data contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Sun, F. & Kolditz, O. Design and integration of a GIS-based data model for the regional hydrologic simulation in Meijiang watershed, China. Environ Earth Sci 74, 7147–7158 (2015). https://doi.org/10.1007/s12665-015-4734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4734-7

Keywords

Navigation