Skip to main content
Log in

Experimental recharge by small-diameter wells: the Pirna, Saxony, case study

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Managed aquifer recharge has been used for various regions worldwide to improve water quantity and quality. Furthermore, contaminated site treatment often requires injection of water together with specific additives to support natural attenuation processes. Händel et al. (in J Hydrol 517:54–63, 2014. doi:10.1016/j.jhydrol.2014.05.003) introduced a new recharge approach, applying cost-efficient small-diameter wells. Numerical studies were applied, among others, to investigate the effect of subsurface structures on injection process. Besides this, a comparison with an infiltration basin was made. To close the gap between the theoretical work and the practical use of this technique for medium-term injection of clean waters and to provide an experimental validation of the small-diameter well recharge, two injection tests using a small-diameter well (1″ inner diameter) were performed at the test site Pirna, Saxony, Germany. In a first short-term test, stepwise increasing injection rates were applied and showed only a slight increase in well water levels. In a second test (using the same well), groundwater was injected continuously for 14 days. The constant injection rate of 0.75 l/s resulted in a recharged water volume of 900 m3, showing the high-performance potential of such wells for clean water infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Assa’d TA, Abdulla FA (2009) Artificial groundwater recharge to a semi-arid basin: case study of Mujib aquifer, Jordan. Environ Earth Sci 60(4):845–859. doi:10.1007/s12665-009-0222-2

    Article  Google Scholar 

  • Asano T, Cotruvo JA (2004) Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Res 38(8):1941–1951. doi:10.1016/j.watres.2004.01.023

    Article  Google Scholar 

  • BGBl. II 2001/304 (2001) Bundesgesetzblatt für die Republik Österreich, 304. Verordnung: Trinkwasserverordnung – TWV, Verlagspostamt 1030, Vienna/Austria

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142. doi:10.1007/s10040-001-0182-4

    Article  Google Scholar 

  • Butler JJ Jr, Healey JM, McCall GW, Garnett EJ, Loheide SP II (2002) Hydraulic tests with direct-push equipment. Ground Water 40(1):25–36. doi:10.1111/j.1745-6584.2002.tb02488.x

    Article  Google Scholar 

  • Butler JJ Jr, Dietrich P, Wittig V, Christy T (2007) Characterizing hydraulic conductivity with the direct-push permeameter. Ground Water 45(4):409–419. doi:10.1111/j.1745-6584.2007.00300.x

    Article  Google Scholar 

  • Colebrook CF (1939) Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws. J Inst Civil Eng 11(4):133–156. doi:10.1680/ijoti.1939.13150

    Article  Google Scholar 

  • Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M (2001) Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol 35(8):1663–1670. doi:10.1021/es001722t

    Article  Google Scholar 

  • Dietrich P, Leven C (2006) Direct push-technologies. In: Kirsch R (ed) Groundwater geophysics. A tool for hydrogeology. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Dietrich P, Butler JJ Jr, Faiss K (2008) A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2):323–328. doi:10.1111/j.1745-6584.2007.00377.x

    Article  Google Scholar 

  • Dietze M, Dietrich P (2012) Evaluation of vertical variations in hydraulic conductivity in unconsolidated sediments. Ground Water 50(3):450–456. doi:10.1111/j.1745-6584.2011.00854.x

    Article  Google Scholar 

  • Fank J, Leis A, Fank A (2012) Gemeinschaftliches nachhaltiges management von Trinkwasserversorgungssystemen im grenzüberschreitenden Mur Einzugsgebiet, Beurteilung der Monitoringergebnisse Phase 1. Report, JOANNEUM Research, Graz/Austria

  • Händel F (2014) Bewertung von oberflächennahen Grundwasseranreicherungen über Aquifer Storage und Recovery unter Berücksichtigung der Aquiferheterogenität und alternativer Infiltrationsmethoden. Dissertation. Technische Universität Dresden, Dresden/Germany

  • Händel F, Liu G, Dietrich P, Liedl R, Butler JJ Jr (2014) Numerical assessment of ASR recharge using small-diameter wells and surface basins. J Hydrol 517:54–63. doi:10.1016/j.jhydrol.2014.05.003

    Article  Google Scholar 

  • Kram M, Lorenzana D, Michaelsen J, Lory E (2001) NFESC technical report TR-2120-ENV—performance comparison: direct-push wells versus drilled wells. Naval Facilities Engineering Command, Washington DC/USA

  • Leven C, Weiß H, Vienken T, Dietrich P (2011) Direct-Push-Technologien–Effiziente Untersuchungsmethoden für die Untergrunderkundung. Grundwasser 16(4):221–234. doi:10.1007/s00767-011-0175-8

    Article  Google Scholar 

  • Liu G, Knobbe S, Reboulet EC, Whittemore DO, Händel F, Butler JJ Jr (2015) Field investigation of a new recharge approach for ASR Projects in near-surface aquifers. Ground Water. doi:10.1111/gwat.12363

    Google Scholar 

  • Olsthoorn TN (1982) Kiwa-communications 72: the clogging of recharge wells, main subjects. Netherlands Waterworks Testing and Research Institute (KIWA), Rijswijk/Netherlands

  • Pavelic P, Dillon PJ, Barry KE, Vanderzalm JL, Correll RL, Rink-Pfeiffer SM (2007) Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer. J Hydrol 334(1–2):1–16. doi:10.1016/j.jhydrol.2006.08.009

    Article  Google Scholar 

  • Pyne RDG (1995) Aquifer storage recovery: a guide to groundwater recharge through wells. CRC Press, Boca Raton

    Google Scholar 

  • Vandenbohede A, Van Houtte E, Lebbe L (2008) Study of the feasibility of an aquifer storage and recovery system in a deep aquifer in Belgium. Hydrolog Sci J 53(4):844–856. doi:10.1623/hysj.53.844

    Article  Google Scholar 

  • Werner AD, Bakker M, Post VE, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. doi:10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded partially by the PhD scholarship programme of German Federal Environmental Foundation and by German Research Foundation (Grant number LI 727/24-1). We thank Christoph Schlamminger, Johannes Klein and Eric Schieblich for their contribution to the field work during the planning phase. Besides this, we want to acknowledge Manuel Kreck and Andreas Schoßland for their technical support in the field. We thank the INOWAS research group (Technische Universität Dresden) for providing data of the water levels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Händel.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “NovCare 2015—Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice”. Guest edited by Uta Sauer and Peter Dietrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Händel, F., Binder, M., Dietze, M. et al. Experimental recharge by small-diameter wells: the Pirna, Saxony, case study. Environ Earth Sci 75, 930 (2016). https://doi.org/10.1007/s12665-016-5701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5701-7

Keywords

Navigation