Skip to main content

Advertisement

Log in

A Computational Study of Structural Designs for a Small-Diameter Composite Vascular Graft Promoting Tissue Regeneration

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The structural integrity and arterial mechanics are important aspects for tissue regenerative vascular grafts with ingrowth permissible porous scaffolds. This paper presents a computational study of structural designs for a small-diameter vascular graft comprising porous polyurethane scaffold and knitted reinforcement mesh using Nitinol and polyurethane wire, respectively. Finite element models of the porous scaffold with the knitted mesh as embedded or external reinforcement were generated using validated constitutive models for porous polyurethane and Nitinol. Simulating a luminal pressure of up to 200 mmHg, deformations and stresses were recorded in porous scaffold and knitted mesh. The models predicted compliance between 1.2 and 15.7%/100 mmHg for the reinforced grafts and 65.1 and 106.4%/100 mmHg for the non-reinforced grafts. For the reinforced grafts, maximum stress was 97.0, 28.2, and 0.055 MPa in Nitinol wire, polyurethane wire, and porous polyurethane scaffold, respectively, at 120 mmHg. The corresponding maximum strain was 0.27, 5.0, and 22.5%. Stress and strain remained safe in the Nitinol mesh and the porous polyurethane but became critical in the polyurethane mesh between 120 and 200 mmHg. Despite compression due to luminal pressure load, the porous scaffold remained ingrowth permissible for cells, capillaries, and arterioles up to 200 mmHg. The outcomes of this study provided preliminary concepts for the structural designs for a tissue regenerative composite vascular graft toward improved mechanical performance and structural integrity. The implemented modeling approach can be used in the further development and optimization of small-diameter tissue-regenerating vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Abaqus Analysis User’s Manual. Providence, RI: Abaqus, Dassault Systèmes, 2008.

  2. Bezuidenhout, D. Porous Polymeric Superstructures as In-Growth Scaffolds for Tissue-Engineered Vascular Prostheses. PhD Thesis. Stellenbosch: Stellenbosch University, 2001.

  3. Bezuidenhout, D., N. Davies, and P. Zilla. Effect of well defined dodecahedral porosity on inflammation and angiogenesis. ASAIO J. 48(5):465–471, 2002.

    Article  Google Scholar 

  4. Crowley, L. V. An Introduction to Human Disease: Pathology and Pathophysiology Correlations (8th ed.). Sudbury, MA: Jones & Bartlett Publishers, 2009.

    Google Scholar 

  5. Dammak, M., A. Shirazi-Adl, and D. J. Zukor. Analysis of cementless implants using interface nonlinear friction–experimental and finite element studies. J. Biomech. 30(2):121–129, 1997.

    Article  Google Scholar 

  6. Davies, N., S. Dobner, D. Bezuidenhout, C. Schmidt, M. Beck, A. H. Zisch, et al. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials 29(26):3531–3538, 2008.

    Article  Google Scholar 

  7. Desai, M., J. Eaton-Evans, C. Hillery, R. Bakhshi, Z. You, J. Lu, et al. AAA stent–grafts: past problems and future prospects. Ann. Biomed. Eng. 38(4):1259–1275, 2010.

    Article  Google Scholar 

  8. Dobrin, P., F. Littooy, J. Golan, B. Blakeman, and J. Fareed. Mechanical and histologic changes in canine vein grafts. J. Surg. Res. 44(3):259–265, 1988.

    Article  Google Scholar 

  9. Ellozy, S. H., A. Carroccio, M. Minor, T. Jacobs, K. Chae, A. Cha, et al. Challenges of endovascular tube graft repair of thoracic aortic aneurysm: midterm follow-up and lessons learned. J. Vasc. Surg. 38(4):676–683, 2003.

    Article  Google Scholar 

  10. Ethier, C. R., and C. A. Simmons. Introductory Biomechanics: From Cells to Organisms. Cambridge Texts in Biomedical Engineering. Cambridge: Cambridge University Press, 2007.

    Google Scholar 

  11. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer, 1993.

    Google Scholar 

  12. Gamble, J. R., L. J. Matthias, G. Meyer, P. Kaur, G. Russ, R. Faull, et al. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell Biol. 121(4):931–943, 1993.

    Article  Google Scholar 

  13. Gorman, S. P., D. S. Jones, M. C. Bonner, M. Akay, and P. F. Keane. Mechanical performance of polyurethane ureteral stents in vitro and ex vivo. Biomaterials 18(20):1379–1383, 1997.

    Article  Google Scholar 

  14. Grapski, J. A., and S. L. Cooper. Synthesis and characterization of non-leaching biocidal polyurethanes. Biomaterials 22(16):2239–2246, 2001.

    Article  Google Scholar 

  15. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3):1–48, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. Info Sheet No. 4: Selected properties of NiTi. Memory-Metalle GmbH, Weil am Rhein. 2006. http://www.memory-metalle.de/html/03_knowhow/PDF/MM_04_properties_e.pdf. Accessed 29/04/2010.

  17. Jacobs, T. S., J. Won, E. C. Gravereaux, P. L. Faries, N. Morrissey, V. J. Teodorescu, et al. Mechanical failure of prosthetic human implants: a 10-year experience with aortic stent graft devices. J. Vasc. Surg. 37(1):16–26, 2003.

    Article  Google Scholar 

  18. Kim, J. H., T. J. Kang, and W.-R. Yu. Mechanical modeling of self-expandable stent fabricated using braiding technology. J. Biomech. 41(15):3202–3212, 2008.

    Article  Google Scholar 

  19. Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41(11):2370–2378, 2008.

    Article  Google Scholar 

  20. Konnerth, J., W. Gindl, and U. Müller. Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. J. Appl. Polym. Sci. 103(6):3936–3939, 2007.

    Article  Google Scholar 

  21. Levy, B., and A. Tedgui (eds.). Biology of the Arterial Wall. Dordrecht: Kluwer, 1999.

    Google Scholar 

  22. Mailhot, B., K. Komvopoulos, B. Ward, Y. Tian, and G. A. Somorjai. Mechanical and friction properties of thermoplastic polyurethanes determined by scanning force microscopy. J. Appl. Phys. 89(10):5712–5719, 2001.

    Article  Google Scholar 

  23. Min, H. K., Y. T. Lee, W. S. Kim, J. H. Yang, K. Sung, T. G. Jun, et al. Complete revascularization using a patent left internal thoracic artery and variable arterial grafts in multivessel coronary reoperation. Heart Surg. Forum 12(5):244–249, 2009.

    Article  Google Scholar 

  24. Mooney, D. J., D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer. Novel approach to fabricate porous sponges of poly(-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422, 1996.

    Article  Google Scholar 

  25. Mortier, P., G. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38(1):88–99, 2010.

    Article  Google Scholar 

  26. Newman Dorland, W. A. Dorland’s Illustrated Medical Dictionary (29th ed.). Philadelphia: Saunders, 2000.

    Google Scholar 

  27. Peynircioglu, B., O. Ergun, T. Hazirolan, T. Serter, I. Ucar, B. Cil, et al. Stent-graft applications in peripheral non-atherosclerotic arterial lesions. Diagn. Interv. Radiol. 14(1):40–50, 2008.

    Google Scholar 

  28. Sakai, H., K. Urasawa, N. Oyama, and A. Kitabatake. Successful covering of a hepatic artery aneurysm with a coronary stent graft. Cardiovasc. Intervent. Radiol. 27(3):274–277, 2004.

    Article  Google Scholar 

  29. Tai, N. R., H. J. Salacinski, A. Edwards, G. Hamilton, and A. M. Seifalian. Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87(11):1516–1524, 2000.

    Article  Google Scholar 

  30. van der Merwe, H., B. Daya Reddy, P. Zilla, D. Bezuidenhout, and T. Franz. A computational study of knitted Nitinol meshes for their prospective use as external vein reinforcement. J. Biomech. 41(6):1302–1309, 2008.

    Article  Google Scholar 

  31. Wiggins, M. J., J. M. Anderson, and A. Hiltner. Biodegradation of polyurethane under fatigue loading. J. Biomed. Mater. Res. A 65A(4):524–535, 2003.

    Article  Google Scholar 

  32. Wong, G., J.-M. Li, G. Hendricks, M. H. Eslami, M. J. Rohrer, and B. S. Cutler. Inhibition of experimental neointimal hyperplasia by recombinant human thrombomodulin coated ePTFE stent grafts. J. Vasc. Surg. 47(3):608–615, 2008.

    Article  Google Scholar 

  33. Xu, W., F. Zhou, C. Ouyang, W. Ye, M. Yao, and B. Xu. Mechanical properties of small-diameter polyurethane vascular grafts reinforced by weft-knitted tubular fabric. J. Biomed. Mater. Res. A 92A(1):1–8, 2010.

    Article  Google Scholar 

  34. Yeoman, M. S. The Design and Optimisation of Fabric Reinforced Porous Prosthetic Grafts Using Finite Element Methods and Genetic Algorithms. PhD Thesis. Cape Town: University of Cape Town, 2004.

  35. Yeoman, M. S., B. D. Reddy, H. C. Bowles, P. Zilla, D. Bezuidenhout, and T. Franz. The use of finite element methods and genetic algorithms in search of an optimal fabric reinforced porous graft system. Ann. Biomed. Eng. 37(11):2266–2287, 2009.

    Article  Google Scholar 

  36. Zilla, P., D. Bezuidenhout, and P. Human. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28(34):5009–5027, 2007.

    Article  Google Scholar 

  37. Zilla, P., P. Human, M. Wolf, W. Lichtenberg, N. Rafiee, D. Bezuidenhout, et al. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. J. Thorac. Cardiovasc. Surg. 136(3):717–725, 2008.

    Article  Google Scholar 

  38. Zilla, P., M. Wolf, N. Rafiee, L. Moodley, D. Bezuidenhout, M. Black, et al. Utilization of shape memory in external vein-graft meshes allows extreme diameter constriction for suppressing intimal hyperplasia: a non-human primate study. J. Vasc. Surg. 49(6):1532–1542, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Research Foundation (NRF) of South Africa.

Conflict of interest statement

The authors declare that they do not have conflicts of interest with regard of this manuscript and the data presented therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Franz.

Additional information

Associate Editor John M Tarbell oversaw the review of this article.

Any opinion, findings, and conclusions or recommendations expressed in this publication are those of the authors and therefore the NRF does not accept any liability in regard thereto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirry, M.S., Zilla, P. & Franz, T. A Computational Study of Structural Designs for a Small-Diameter Composite Vascular Graft Promoting Tissue Regeneration. Cardiovasc Eng Tech 1, 269–281 (2010). https://doi.org/10.1007/s13239-010-0023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0023-5

Keywords

Navigation