Skip to main content
Log in

Dual-Energy CT: Applications in Abdominal Imaging

  • Abdominal CT-An Update on Applications and New Developments (H. Teh, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Dual-energy CT (DECT) is a steadily emerging innovative imaging modality. Various applications have been developed and applied to successfully solve diagnostic difficulties that standard CT has in the abdomen. This includes kidney stone differentiation, cholesterol gallstone detection, renal and adrenal lesion characterization, and tumor response monitoring. This article is supposed to give a current update on possible applications of DECT in the abdomen and their evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. • Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012;199:S3–8. This paper gives a state-of-the-art insight into physics and technical aspects of Dual-Energy CT of all available systems.

  2. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17:1510–7.

    Article  PubMed  Google Scholar 

  3. Guimaraes LS, Fletcher JG, Harmsen WS, et al. Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology. 2010;257:732–42.

    Article  PubMed  Google Scholar 

  4. Primak AN, Giraldo JC, Eusemann CD, et al. Dual-source dual-energy CT with additional tin filtration: dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol. 2010;195:1164–74.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Im AL, Lee YH, Bang DH, Yoon KH, Park SH. Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol. 2013;20:475–83.

    Article  PubMed  Google Scholar 

  6. •• Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 2013;49:586–92. The prinicples behind pseudo-mono-energetic image generation are explained in detail and illustrated with graphics and examples.

  7. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199:S9–15.

    Article  PubMed  Google Scholar 

  8. De Cecco CN, Darnell A, Macias N, et al. Second-generation dual-energy computed tomography of the abdomen: radiation dose comparison with 64- and 128-row single-energy acquisition. J Comput Assist Tomogr. 2013;37:543–6.

    Article  PubMed  Google Scholar 

  9. Purysko AS, Primak AN, Baker ME, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014. doi:10.1016/j.crad.2014.08.021.

    PubMed  Google Scholar 

  10. Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol. 2010;20:2257–64.

    Article  PubMed  Google Scholar 

  11. De Cecco CN, Buffa V, Fedeli S, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol. 2010;20:2870–5.

    Article  PubMed  Google Scholar 

  12. De Cecco CN, Darnell A, Macias N, et al. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol. 2013;48:1–9.

    Article  PubMed  Google Scholar 

  13. •• Sahni VA, Shinagare AB, Silverman SG. Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase. Clin Radiol 2013;68:264–71. This paper very nicely shows the strenghts and weaknesses of virtual un-enhanced images/iodine subtraction techniques with respect to HU accuracy, image artifacts and kidney stone detection.

  14. Barrett T, Bowden DJ, Shaida N, et al. Virtual unenhanced second generation dual-source CT of the liver: is it time to discard the conventional unenhanced phase? Eur J Radiol. 2012;81:1438–45.

    Article  CAS  PubMed  Google Scholar 

  15. Toepker M, Moritz T, Krauss B, et al. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol. 2012;81:e398–405.

    Article  PubMed  Google Scholar 

  16. Kaufmann S, Sauter A, Spira D, et al. Tin-filter enhanced dual-energy-CT: image quality and accuracy of CT numbers in virtual noncontrast imaging. Acad Radiol. 2013;20:596–603.

    Article  PubMed  Google Scholar 

  17. Miller CM, Gupta RT, Paulson EK, et al. Effect of organ enhancement and habitus on estimation of unenhanced attenuation at contrast-enhanced dual-energy MDCT: concepts for individualized and organ-specific spectral iodine subtraction strategies. AJR Am J Roentgenol. 2011;196:W558–64.

    Article  PubMed  Google Scholar 

  18. Gao SY, Zhang XP, Cui Y, et al. Fused monochromatic imaging acquired by single source dual energy CT in hepatocellular carcinoma during arterial phase: an initial experience. Chin J Cancer Res. 2014;26:437–43.

    PubMed Central  PubMed  Google Scholar 

  19. • Lv P, Lin XZ, Chen K, Gao J. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol 2012;22:2117–24. The authors show how diagnostic accuracy for small hyperenhancing liver lesions can be improved by virtual mono-energetic images at low keV.

  20. Shuman WP, Green DE, Busey JM, et al. Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol. 2014;203:601–6.

    Article  PubMed  Google Scholar 

  21. Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S. Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Invest Radiol. 2012;47:292–8.

    Article  PubMed  Google Scholar 

  22. Kim KS, Lee JM, Kim SH, et al. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Invest Radiol. 2010;45:149–57.

    Article  PubMed  Google Scholar 

  23. Li S, Wang C, Jiang X, Xu G. Effects of dual-energy CT with non-linear blending on abdominal CT angiography. Korean J Radiol. 2014;15:430–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lv P, Liu J, Wu R, Hou P, Hu L, Gao J. Use of non-linear image blending with dual-energy CT improves vascular visualization in abdominal angiography. Clin Radiol. 2014;69:e93–9.

    Article  CAS  PubMed  Google Scholar 

  25. Schabel C, Bongers M, Sedlmair M, et al. Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm. RoFo. 2014;186:591–7.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Shi G, Liu X, Wu R, Wang S. Optimal contrast of computed tomography portal venography using dual-energy computed tomography. J Comput Assist Tomogr. 2013;37:142–8.

    Article  PubMed  Google Scholar 

  27. Zhao LQ, He W, Li JY, Chen JH, Wang KY, Tan L. Improving image quality in portal venography with spectral CT imaging. Eur J Radiol. 2012;81:1677–81.

    Article  PubMed  Google Scholar 

  28. Clark ZE, Bolus DN, Little MD, Morgan DE. Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: an intra-patient comparison. Abdom Imaging. 2014. doi:10.1007/s00261-014-0253-3.

    PubMed  Google Scholar 

  29. •• Mileto A, Ramirez-Giraldo JC, Marin D, et al. Nonlinear image blending for dual-energy MDCT of the abdomen: can image quality be preserved if the contrast medium dose is reduced? AJR Am J Roentgenol 2014;203:838–45. The authors were able to show that adequate selection of non-linear blending settings holds the potential for reducing the total required contrast material dose without loss of image quality for portal venous phase CT.

  30. Patel BN, Kumbla RA, Berland LL, Fineberg NS, Morgan DE. Material density hepatic steatosis quantification on intravenous contrast-enhanced rapid kilovolt (peak)-switching single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37:904–10.

    Article  PubMed  Google Scholar 

  31. Zheng X, Ren Y, Phillips WT, et al. Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study. J Comput Assist Tomogr. 2013;37:134–41.

    Article  PubMed  Google Scholar 

  32. Joe E, Kim SH, Lee KB, et al. Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology. 2011;262:126–35.

    Article  PubMed  Google Scholar 

  33. Bauer RW, Schulz JR, Zedler B, Graf TG, Vogl TJ. Compound analysis of gallstones using dual energy computed tomography—results in a phantom model. Eur J Radiol. 2010;75:e74–80.

    Article  PubMed  Google Scholar 

  34. Voit H, Krauss B, Heinrich MC, et al. Dual-source CT: in vitro characterization of gallstones using dual energy analysis. RoFo. 2009;181:367–73.

    Article  CAS  PubMed  Google Scholar 

  35. Sommer CM, Schwarzwaelder CB, Stiller W, et al. Dual-energy computed-tomography cholangiography in potential donors for living-related liver transplantation: initial experience. Invest Radiol. 2010;45:406–12.

    Article  PubMed  Google Scholar 

  36. Stiller W, Schwarzwaelder CB, Sommer CM, Veloza S, Radeleff BA, Kauczor HU. Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure. Eur J Radiol. 2012;81:1405–12.

    Article  CAS  PubMed  Google Scholar 

  37. Mileto A, Mazziotti S, Gaeta M, et al. Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol. 2012;67:334–9.

    Article  PubMed  Google Scholar 

  38. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68:148–54.

    Article  CAS  PubMed  Google Scholar 

  39. • Lin XZ, Wu ZY, Tao R, et al. Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 2012;81:2487–94. The combination of virtual mono-chromatic images at low keV and iodine maps can substantially increase the detection rate of small pancreatic insulinoma over standard MDCT.

  40. Gnannt R, Fischer M, Goetti R, Karlo C, Leschka S, Alkadhi H. Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. AJR Am J Roentgenol. 2012;198:138–44.

    Article  PubMed  Google Scholar 

  41. Ho LM, Marin D, Neville AM, et al. Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? AJR Am J Roentgenol. 2011;198:840–5.

    Article  Google Scholar 

  42. Kim YK, Park BK, Kim CK, Park SY. Adenoma characterization: adrenal protocol with dual-energy CT. Radiology. 2013;267:155–63.

    Article  PubMed  Google Scholar 

  43. Gupta RT, Ho LM, Marin D, Boll DT, Barnhart HX, Nelson RC. Dual-energy CT for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol. 2010;194:1479–83.

    Article  PubMed  Google Scholar 

  44. • Shi JW, Dai HZ, Shen L, Xu DF. Dual-energy CT: clinical application in differentiating an adrenal adenoma from a metastasis. Acta Radiol 2014;55:505–12. A well powered study on how DECT can help with the differentiation of adrenal adenoma from metastases. Adenomas show attenuation characteristics at high and low photon energies that are substantially different from metastases.

  45. Morgan DE, Weber AC, Lockhart ME, Weber TM, Fineberg NS, Berland LL. Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT. J Comput Assist Tomogr. 2013;37:937–43.

    Article  PubMed  Google Scholar 

  46. Mileto A, Nelson RC, Marin D, Choudhury KR, Ho LM. Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis. Radiology. 2014. doi:10.1148/radiol.14140876:140876.

    Google Scholar 

  47. Graser A, Johnson TR, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252:433–40.

    Article  PubMed  Google Scholar 

  48. Neville AM, Gupta RT, Miller CM, Merkle EM, Paulson EK, Boll DT. Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology. 2011;259:173–83.

    Article  PubMed  Google Scholar 

  49. •• Graser A, Becker CR, Staehler M, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 2010;45:399–405. The authors were able to demonstrate in a large patient cohort that with the help of DE-specific postprocessing with VUE and iodine maps an accurate diagnosis of renal lesions can be made faster with less radiation exposure.

  50. Song KD, Kim CK, Park BK, Kim B. Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. AJR Am J Roentgenol. 2011;197:W1076–82.

    Article  PubMed  Google Scholar 

  51. Ascenti G, Mazziotti S, Mileto A, et al. Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol. 2012;199:1026–34.

    Article  PubMed  Google Scholar 

  52. • Kaza RK, Caoili EM, Cohan RH, Platt JF. Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 2011;197:1375–1381. A quantitative approach to determine the iodine-related enhancement of a renal lesion. A threshold of 2 mg/ml was ideal to discriminate enhancement from no enhancement.

  53. Ascenti G, Mileto A, Krauss B, et al. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol. 2013;23:2288–95.

    Article  PubMed  Google Scholar 

  54. Mileto A, Marin D, Ramirez-Giraldo JC, et al. Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol. 2014;202:W466–74.

    Article  PubMed  Google Scholar 

  55. Mileto A, Nelson RC, Samei E, et al. Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology. 2014;272:767–76.

    Article  PubMed  Google Scholar 

  56. Graser A, Johnson TR, Bader M, et al. Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol. 2008;43:112–9.

    Article  PubMed  Google Scholar 

  57. Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology. 2010;257:394–401.

    Article  PubMed  Google Scholar 

  58. Kulkarni NM, Eisner BH, Pinho DF, Joshi MC, Kambadakone AR, Sahani DV. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37:37–45.

    Article  PubMed  Google Scholar 

  59. Manglaviti G, Tresoldi S, Guerrer CS, et al. In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol. 2011;197:W76–83.

    Article  PubMed  Google Scholar 

  60. Stolzmann P, Kozomara M, Chuck N, et al. In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2009;35:629–35.

    Article  PubMed  Google Scholar 

  61. Thomas C, Heuschmid M, Schilling D, et al. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology. 2010;257:402–9.

    Article  PubMed  Google Scholar 

  62. Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009;19:1553–9.

    Article  CAS  PubMed  Google Scholar 

  63. Zilberman DE, Ferrandino MN, Preminger GM, Paulson EK, Lipkin ME, Boll DT. In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol. 2010;184:2354–9.

    Article  CAS  PubMed  Google Scholar 

  64. •• Jepperson MA, Ibrahim el SH, Taylor A, Cernigliaro JG, Haley WE, Thiel DD. Accuracy and efficiency of determining urinary calculi composition using dual-energy computed tomography compared with Hounsfield unit measurements for practicing physicians. Urology 2014;84:561–64. A highly interesting study that focuses on the ease of use, learing curve, reproduceability and reliability of DE-based kidney stone characterization among non-radiologists.

  65. Toepker M, Kuehas F, Kienzl D, et al. Dual energy computerized tomography with a split bolus—a 1-stop shop for patients with suspected urinary stones? J Urol. 2013;191:792–7.

    Article  PubMed  Google Scholar 

  66. Botsikas D, Hansen C, Stefanelli S, Becker CD, Montet X. Urinary stone detection and characterisation with dual-energy CT urography after furosemide intravenous injection: preliminary results. Eur Radiol. 2014;24:709–14.

    Article  PubMed  Google Scholar 

  67. Karlo CA, Gnannt R, Winklehner A, et al. Split-bolus dual-energy CT urography: protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging. 2013;38:1136–43.

    Article  PubMed  Google Scholar 

  68. Lv P, Zhang Y, Liu J, Ji L, Chen Y, Gao J. Material decomposition images generated from spectral CT: detectability of urinary calculi and influencing factors. Acad Radiol. 2014;21:79–85.

    Article  PubMed  Google Scholar 

  69. • Mangold S, Thomas C, Fenchel M, et al. Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology 2012;264:119–25. A thoroughly conducted methodic study to analyise influencing factors for urinary tract calculi detection rate on VUE images derived from DECT urography.

  70. Moon JW, Park BK, Kim CK, Park SY. Evaluation of virtual unenhanced CT obtained from dual-energy CT urography for detecting urinary stones. Br J Radiol. 2012;85:e176–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Takahashi N, Vrtiska TJ, Kawashima A, et al. Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology. 2010;256:184–90.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Apfaltrer P, Meyer M, Meier C, et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012;47:65–70.

    Article  CAS  PubMed  Google Scholar 

  73. • Meyer M, Hohenberger P, Apfaltrer P, et al. CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 2013;82:923–28. Outcome study on GIST under therapy followed-up with DECT. This is the first article to show that only DE-specific information can be reliable predictors for surivial.

  74. Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol. 2013;82:327–34.

    Article  PubMed  Google Scholar 

  75. Uhrig M, Sedlmair M, Schlemmer HP, Hassel JC, Ganten M. Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging. 2013;13:306–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Park SY, Kim CK, Park BK. Dual-energy CT in assessing therapeutic response to radiofrequency ablation of renal cell carcinomas. Eur J Radiol. 2014;83:e73–9.

    Article  PubMed  Google Scholar 

  77. Lee SH, Lee JM, Kim KW, et al. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps. Invest Radiol. 2011;46:77–84.

    Article  PubMed  Google Scholar 

  78. Lee JA, Jeong WK, Kim Y, et al. Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging. Eur J Radiol. 2013;82:569–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf W. Bauer.

Additional information

This article is part of the Topical Collection on Abdominal CT-An Update on Applications and New Developments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, R.W., Fischer, S. Dual-Energy CT: Applications in Abdominal Imaging. Curr Radiol Rep 3, 9 (2015). https://doi.org/10.1007/s40134-015-0090-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0090-3

Keywords

Navigation