Skip to main content
Log in

Review of the Cost Effectiveness of Pharmacogenetic-Guided Treatment of Hypercholesterolaemia

  • Leading Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Hypercholesterolaemia is a highly prevalent condition that has major health and cost implications for society. Pharmacotherapy is an important and effective treatment modality for hypercholesterolaemia, with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (‘statins’) the most commonly used class of drugs. Over the past decade, there has been intensive research to identify pharmacogenetic markers to guide treatment of hypercholesterolaemia. This study aimed to review the evidence of incremental cost, effect and cost effectiveness of pharmacogenetic-guided treatment of hypercholesterolaemia. Three cost-effectiveness analyses (CEAs) were identified that studied the value of screening for genotypes of angiotensin I converting enzyme (ACE), cholesteryl ester transfer protein (CETP), and kinesin family member 6 (KIF6) prior to initiating statin therapy. For all three CEAs, a major limitation identified was the reproducibility of the evidence supporting the clinical effect of screening for the pharmacogenetic marker. Associated issues included the uncertain value of pharmacogenetic markers over or in addition to existing approaches for monitoring lipid levels, and the lack of evidence to assess the effectiveness of alternative therapeutic options for individuals identified as poor responders to statin therapy. Finally, the economic context of the market for diagnostic tests (is it competitive or is there market power?) and the practicality of large-scale screening programmes to inform prescribing in a complex and varied market may limit the generalizability of the results of the specific CEAs to policy outcomes. The genotype of solute carrier organic anion transporter family member 1B1 (SLCO1B1) has recently been associated with increased risk of muscle toxicity with statin therapy and the review identified that exploration of cost effectiveness of this pharmacogenetic marker is likely warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol. 2004;44(3):720–32.

    Article  PubMed  Google Scholar 

  2. National Center for Health Statistics. Health, United States, 2010: with special feature on death and dying [DHHS Publication No. 2011-1232]. Hyattsville: US Department of Health and Human Services; 2011.

  3. Department of Health and Ageing. Pharmaceutical Benefits Scheme (PBS): expenditure and prescriptions twelve months to 30 June 2011. Canberra: Australian Government. 2012. http://www.health.gov.au/internet/main/publishing.nsf/content/pbs-stats-pbexp-jun11. Accessed 19 Aug 2012.

  4. Aitken M, Berndt ER, Cutler DM. Prescription drug spending trends in the United States: looking beyond the turning point. Health Aff. 2009;28(1):w151–60.

    Article  Google Scholar 

  5. Reiner Z, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011;32(14):1769–818.

    Article  PubMed  Google Scholar 

  6. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.

    Article  PubMed  CAS  Google Scholar 

  7. Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90.

    PubMed  CAS  Google Scholar 

  8. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    Article  PubMed  CAS  Google Scholar 

  9. Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97(12):1129–35.

    Article  PubMed  CAS  Google Scholar 

  10. Mitsios JV, Papathanasiou AI, Goudevenos JA, et al. The antiplatelet and antithrombotic actions of statins. Curr Pharm Des. 2010;16(34):3808–14.

    Article  PubMed  CAS  Google Scholar 

  11. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.

    Article  PubMed  CAS  Google Scholar 

  12. Abela GS, Vedre A, Janoudi A, et al. Effect of statins on cholesterol crystallization and atherosclerotic plaque stabilization. Am J Cardiol. 2011;107(12):1710–7.

    Article  PubMed  CAS  Google Scholar 

  13. Shishehbor MH, Brennan ML, Aviles RJ, et al. Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation. 2003;108(4):426–31.

    Article  PubMed  CAS  Google Scholar 

  14. Superko HR, Momary KM, Li Y. Statins personalized. Med Clin N Am. 2012;96(1):123–39.

    Article  PubMed  CAS  Google Scholar 

  15. Guerin M, Egger P, Soudant C, et al. Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. Atherosclerosis. 2002;163(2):287–96.

    Article  PubMed  CAS  Google Scholar 

  16. Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther. 2010;87(1):130–3.

    Article  PubMed  CAS  Google Scholar 

  17. Romaine SPR, Bailey KM, Hall AS, et al. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J. 2010;10(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  18. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy: A Genomewide Study. N Engl J Med. 2008;359(8):789–99.

    Article  PubMed  CAS  Google Scholar 

  19. Kemp LK, Doran CM, Vos T, et al. Cost-effectiveness analysis of genetic screening for the Taq1B polymorphism in the secondary prevention of coronary heart disease. Expert Rev Pharmacoecon Outcomes Res. 2007;7(2):119–28.

    Article  PubMed  Google Scholar 

  20. Maitland-van der Zee AH, Klungel OH, Stricker BHC, et al. Pharmacoeconomic evaluation of testing for angiotensin-converting enzyme genotype before starting [beta]-hydroxy-[beta]-methylglutaryl coenzyme A reductase inhibitor therapy in men. Pharmacogenetics. 2004;14(1):53–60.

    Article  PubMed  Google Scholar 

  21. Parthan A, Iakoubova O, Leahy K, et al. Cost effectiveness of targeted statin therapy following genotype testing among acute coronary syndrome patients [abstract no. 1538 plus poster]. 16th World Congress on Heart Disease; 23–26 July 2011; Vancouver.

  22. Doggrell SA. The ezetimibe controversy: can this be resolved by comparing the clinical trials with simvastatin and ezetimibe alone and together? Expert Opin Pharmacother. 2012;13(10):1469–80.

    Article  PubMed  CAS  Google Scholar 

  23. Carlquist JF, Muhlestein JB, Horne BD, et al. The cholesteryl ester transfer protein Taq1B gene polymorphism predicts clinical benefit of statin therapy in patients with significant coronary artery disease. Am Heart J. 2003;146(6):1007–14.

    Article  PubMed  CAS  Google Scholar 

  24. Kakko S, Tamminen M, Päivänsalo M, et al. Variation at the cholesteryl ester transfer protein gene in relation to plasma high density lipoproteins cholesterol levels and carotid intima-media thickness. Eur J Clin Invest. 2001;31(7):593–602.

    Article  PubMed  CAS  Google Scholar 

  25. Arca M, Montali A, Ombres D, et al. Lack of association of the common TaqIB polymorphism in the cholesteryl ester transfer protein gene with angiographically assessed coronary atherosclerosis. Clin Genet. 2001;60(5):374–80.

    Article  PubMed  CAS  Google Scholar 

  26. Eiriksdottir G, Bolla MK, Thorsson B, et al. The -629C>A polymorphism in the CETP gene does not explain the association of TaqIB polymorphism with risk and age of myocardial infarction in Icelandic men. Atherosclerosis. 2001;159(1):187–92.

    Article  PubMed  CAS  Google Scholar 

  27. Marschang P, Sandhofer A, Ritsch A, et al. Plasma cholesteryl ester transfer protein concentrations predict cardiovascular events in patients with coronary artery disease treated with pravastatin. J Intern Med. 2006;260(2):151–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mohrschladt MF, Van der Sman-de Beer F, Hofman MK, et al. TaqIB polymorphism in CETP gene: the influence on incidence of cardiovascular disease in statin-treated patients with familial hypercholesterolemia. Eur J Hum Genet. 2005;13(7):877–82.

    Article  PubMed  CAS  Google Scholar 

  29. Kuivenhoven J, Jukema J, Zwinderman A, et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med. 1998;338(2):86–93.

    Article  PubMed  CAS  Google Scholar 

  30. de Grooth GJ, Zerba KE, Huang SP, et al. The cholesteryl ester transfer protein (CETP) TaqIB polymorphism in the cholesterol and recurrent events study: no interaction with the response to pravastatin therapy and no effects on cardiovascular outcome—a prospective analysis of the CETP TaqIB polymorphism on cardiovascular outcome and interaction with cholesterol-lowering therapy. J Am Coll Cardiol. 2004;43(5):854–7.

    Article  PubMed  Google Scholar 

  31. Freeman DJ, Samani NJ, Wilson V, et al. A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland Coronary Prevention Study. Eur Heart J. 2003;24(20):1833–42.

    Article  PubMed  CAS  Google Scholar 

  32. Boekholdt SM, Sacks FM, Jukema JW, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment. Circulation. 2005;111(3):278–87.

    Article  PubMed  CAS  Google Scholar 

  33. Dullaart RP, Sluiter WJ. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics. 2008;9(6):747–63.

    Article  PubMed  CAS  Google Scholar 

  34. Maitland-van der Zee AH, Stricker BHC, Klungela OH, et al. Effectiveness of HMG-CoA reductase inhibitors is modified by the ACE insertion deletion polymorphism. Atherosclerosis. 2004;175(2):377–9.

    Article  PubMed  CAS  Google Scholar 

  35. Marian AJ, Safavi F, Ferlic L, et al. Interactions between angiotensin-I converting enzyme insertion/deletion polymorphism and response of plasma lipids and coronary atherosclerosis to treatment with fluvastatin: the Lipoprotein and Coronary Atherosclerosis Study. J Am Coll Cardiol. 2000;35(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  36. Bray PF, Cannon CP, Goldschmidt-Clermont P, et al. The platelet Pl (A2) and angiotensin-converting enzyme (ACE) D allele polymorphisms and the risk of recurrent events after acute myocardial infarction. Am J Cardiol. 2001;88:347–52.

    Article  PubMed  CAS  Google Scholar 

  37. Maitland-van der Zee A, Boerwinkle E, Arnett D, et al. Absence of an interaction between the angiotensin-converting enzyme insertion-deletion polymorphism and pravastatin on cardiovascular disease in high-risk hypertensive patients: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Am Heart J. 2007;153(1):54–8.

    Article  PubMed  CAS  Google Scholar 

  38. Kitsios G, Zintzaras E. ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation. BMC Med Genet. 2009;10:50.

    Article  PubMed  Google Scholar 

  39. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.

    Article  PubMed  CAS  Google Scholar 

  40. Iakoubova O, Sabatine M, Rowland CM, et al. Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 Study. J Am Coll Cardiol. 2008;51(4):449–55.

    Article  PubMed  CAS  Google Scholar 

  41. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005;353(5):487–97.

    Article  PubMed  CAS  Google Scholar 

  42. Charland SL, Agatep BC, Schrader BJ, et al. Statin adherence in males and females, and the impact of knowledge of a genetic test: results from the AKROBATS Trial [abstract no. 290 plus poster]. Circ Cardiovasc Qual Outcomes. 2012;5:A290.

    Article  Google Scholar 

  43. Assimes TL, Hólm H, Kathiresan S, et al. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies. J Am Coll Cardiol. 2010;56(19):1552–63.

    Article  PubMed  CAS  Google Scholar 

  44. Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51(4):435–43.

    Article  PubMed  CAS  Google Scholar 

  45. Iakoubova OA, Robertson M, Tong CH, et al. KIF6 Trp719Arg polymorphism and the effect of statin therapy in elderly patients: results from the PROSPER study. Eur J Cardiovasc Prev Rehabil. 2010;17(4):455–61.

    Article  PubMed  Google Scholar 

  46. Shiffman D, Sabatine MS, Louie JZ, et al. Effect of pravastatin therapy on coronary events in carriers of the KIF6 719Arg allele from the cholesterol and recurrent events trial. Am J Cardiol. 2010;105(9):1300–5.

    Article  PubMed  CAS  Google Scholar 

  47. Hopewell JC, Parish S, Clarke R, et al. No impact of KIF6 genotype on vascular risk and statin response among 18,348 randomized patients in the Heart Protection Study. J Am Coll Cardiol. 2011;57(20):2000–7.

    Article  PubMed  CAS  Google Scholar 

  48. Ridker PM, MacFadyen JG, Glynn RJ, et al. Kinesin-like protein 6 (KIF6) polymorphism and the efficacy of rosuvastatin in primary prevention. Circ Cardiovasc Genet. 2011;4(3):312–7.

    Article  PubMed  CAS  Google Scholar 

  49. Hoffmann MM, Marz W, Genser B, et al. Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and cardiovascular risk and efficacy of atorvastatin among subjects with diabetes on dialysis: the 4D study. Atherosclerosis. 2011;219(2):659–62.

    Article  PubMed  CAS  Google Scholar 

  50. Arsenault BJ, Boekholdt SM, Hovingh GK, et al. The 719Arg variant of KIF6 and cardiovascular outcomes in statin-treated, stable coronary patients of the treating to new targets and incremental decrease in end points through aggressive lipid-lowering prospective studies. Circ Cardiovasc Genet. 2012;5(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  51. Marks D, Thorogood M, Neil HAW, et al. Comparing costs and benefits over a 10 year period of strategies for familial hypercholesterolaemia screening. J Public Health. 2003;25(1):47–52.

    Article  Google Scholar 

  52. Marks D, Wonderling D, Thorogood M, et al. Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia. BMJ. 2002;324(7349):1303.

    Article  PubMed  Google Scholar 

  53. Wonderling D, Umans-Eckenhausen MA, Marks D, et al. Cost-effectiveness analysis of the genetic screening program for familial hypercholesterolemia in The Netherlands. Semin Vasc Med. 2004;4(1):97–104.

    Article  PubMed  Google Scholar 

  54. Marang-van de Mheen P, ten Asbroek A, Bonneux L, et al. Cost-effectiveness of a family and DNA based screening programme on familial hypercholesterolaemia in The Netherlands. Eur Heart J. 2002;23(24):1922–30.

    Article  PubMed  CAS  Google Scholar 

  55. Oliva J, Lopez-Bastida J, Moreno SG, et al. Cost-effectiveness analysis of a genetic screening program in the close relatives of Spanish patients with familial hypercholesterolemia [in Spanish]. Rev Esp Cardiol. 2009;62(1):57–65.

    Article  PubMed  Google Scholar 

  56. Nherera L, Marks D, Minhas R, et al. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart. 2011;97(14):1175–81.

    Article  PubMed  CAS  Google Scholar 

  57. Minhas R, Humphries SE, Qureshi N, et al. Controversies in familial hypercholesterolaemia: recommendations of the NICE Guideline Development Group for the identification and management of familial hypercholesterolaemia. Heart. 2009;95(7):584–7.

    Article  PubMed  CAS  Google Scholar 

  58. Vergopoulos A, Knoblauch H, Schuster H. DNA testing for familial hypercholesterolemia: improving disease recognition and patient care. Am J Pharmacogenomics. 2002;2(4):253–62.

    Article  PubMed  CAS  Google Scholar 

  59. Humphries SE, Neil HAW. Developing and applying clinically useful approaches to identify individuals with familial hypercholesterolemia in the UK. Clin Lipidol. 2010;5(4):497–507.

    Article  Google Scholar 

  60. Ioannidis J, Panagiotou O. Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA. 2011;305(21):2200–10.

    Article  PubMed  CAS  Google Scholar 

  61. Ioannidis JPA, Ntzani EE, Trikalinos TA, et al. Replication validity of genetic association studies. Nat Genet. 2001;29(3):306–9.

    Article  PubMed  CAS  Google Scholar 

  62. Bossuyt PM. The thin line between hope and hype in biomarker research. JAMA. 2011;305(21):2229–30.

    Article  PubMed  CAS  Google Scholar 

  63. Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenomics. AAPS PharmSci. 2000;2(3):80–90.

    Article  Google Scholar 

  64. Talameh JA, McLeod HL. PON1 Q192R and clopidogrel: a case of the winner’s curse or inadequate replication? Clin Pharmacol Ther. 2011;90(6):771–4.

    Article  PubMed  CAS  Google Scholar 

  65. US Food and Drug Administration. Guidance for industry: E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. Rockville: FDA. 2008. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM073162.pdf. Accessed 14 Aug 2012.

  66. Bailey KM, Romaine SP, Jackson BM, et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet. 2010;3(3):276–85.

    Article  PubMed  CAS  Google Scholar 

  67. Poduri A, Khullar M, Bahl A, et al. Common variants of HMGCR, CETP, APOAI, ABCB1, CYP3A4, and CYP7A1 genes as predictors of lipid-lowering response to atorvastatin therapy. DNA Cell Biol. 2010;29(10):629–37.

    Article  PubMed  CAS  Google Scholar 

  68. Maitland-van der Zee A-H, Lynch A, Boerwinkle E, et al. Interactions between the single nucleotide polymorphisms in the homocysteine pathway (MTHFR 677C>T, MTHFR 1298 A>C, and CBSins) and the efficacy of HMG-CoA reductase inhibitors in preventing cardiovascular disease in high-risk patients of hypertension: the GenHAT study. Pharmacogenet Genomics. 2008;18(8):651–6.

    Article  PubMed  CAS  Google Scholar 

  69. Chiodini BD, Franzosi MG, Barlera S, et al. Apolipoprotein E polymorphisms influence effect of pravastatin on survival after myocardial infarction in a Mediterranean population: the GISSI-Prevenzione study. Eur Heart J. 2007;28(16):1977–83.

    Article  PubMed  CAS  Google Scholar 

  70. Kral A, Kovarnik T, Kralik L, et al. Genetic variants in haem oxygenase-1 and endothelial nitric oxide synthase influence the extent and evolution of coronary artery atherosclerosis. Folia Biol (Praha). 2011;57(5):182–90.

    CAS  Google Scholar 

  71. Marciante KD, Durda JP, Heckbert SR, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics. 2011;21(5):280–8.

    Article  PubMed  CAS  Google Scholar 

  72. Dubuc G, Tremblay M, Pare G, et al. A new method for measurement of total plasma PCSK9: clinical applications. J Lipid Res. 2010;51(1):140–9.

    Article  PubMed  Google Scholar 

  73. Cerda A, Genvigir FDV, Willrich MAV, et al. Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin. Lipids Health Dis. 2011;10:206.

    Article  PubMed  CAS  Google Scholar 

  74. Chien K-L, Wang K-C, Chen Y-C, et al. Common sequence variants in pharmacodynamic and pharmacokinetic pathway-related genes conferring LDL cholesterol response to statins. Pharmacogenomics. 2010;11(3):309–17.

    Article  PubMed  CAS  Google Scholar 

  75. Hamrefors V, Orho-Melander M, Krauss RM, et al. A gene score of nine LDL and HDL regulating genes is associated with fluvastatin-induced cholesterol changes in women. J Lipid Res. 2010;51(3):625–34.

    Article  PubMed  CAS  Google Scholar 

  76. Trompet S, de Craen AJM, Postmus I, et al. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco) genetic analyses. BMC Med Genet. 2011;12:131.

    Article  PubMed  CAS  Google Scholar 

  77. Baptista R, Rebelo M, Decq-Mota J, et al. Apolipoprotein E epsilon-4 polymorphism is associated with younger age at referral to a lipidology clinic and a poorer response to lipid-lowering therapy. Lipids Health Dis. 2011;10:48.

    Article  PubMed  CAS  Google Scholar 

  78. Davies NM, Windmeijer F, Martin RM, et al. Use of genotype frequencies in medicated groups to investigate prescribing practice: APOE and statins as a proof of principle. Clin Chem. 2011;57(3):502–10.

    Article  PubMed  CAS  Google Scholar 

  79. Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC Guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92:112–7.

    Article  PubMed  CAS  Google Scholar 

  80. US Food and Drug Administration. FDA drug safety communication: new restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. Rockville: FDA. 2011. http://www.fda.gov/Drugs/DrugSafety/ucm256581.htm. Accessed 19 Aug 2012.

  81. Donnelly L, Doney A, Tavendale R, et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther. 2011;89(2):210–6.

    Article  PubMed  CAS  Google Scholar 

  82. Voora D, Shah SH, Spasojevic I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol. 2009;54(17):1609–16.

    Article  PubMed  CAS  Google Scholar 

  83. Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis. 2010;211(1):28–9.

    Article  PubMed  CAS  Google Scholar 

  84. Brunham LR, Lansberg PJ, Zhang L, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012;12(3):233–7.

    Article  PubMed  CAS  Google Scholar 

  85. Teutsch SM, Bradley LA, Palomaki GE, et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med. 2009;11(1):3–14.

    Article  PubMed  Google Scholar 

  86. Drummond M, Manca A, Sculpher M. Increasing the generalizability of economic evaluations: Recommendations for the design, analysis, and reporting of studies. Int J Technol Assess Health Care. 2005;21(02):165–71.

    PubMed  Google Scholar 

  87. Davis JC, Furstenthal L, Desai AA, et al. The microeconomics of personalized medicine: today’s challenge and tomorrow’s promise. Nat Rev Drug Discov. 2009;8(4):279–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Heart Foundation of Australia [G11A5902]. The authors gratefully acknowledge the assistance of Sunjay Pekarsky-Norman in the preparation of Fig. 3. Michael Sorich and Brita Pekarsky are members of the Economics Sub-Committee of the Australian Pharmaceutical Benefits Advisory Committee, but the views expressed in this article are solely those of the authors. Rebekah O’Shea was employed by Bayer Australia Ltd until November 2009. All authors contributed to the conception and planning of the manuscript, drafting and critical revision of the manuscript, and approval of the final submitted version of the manuscript. Michael Sorich acts as guarantor for the overall content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sorich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorich, M.J., Wiese, M.D., O’Shea, R.L. et al. Review of the Cost Effectiveness of Pharmacogenetic-Guided Treatment of Hypercholesterolaemia. PharmacoEconomics 31, 377–391 (2013). https://doi.org/10.1007/s40273-013-0045-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-013-0045-6

Keywords

Navigation