Skip to main content
Log in

The significance of ectomycorrhizal fungi for sulfur nutrition of trees

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Sulfur nutrition of plants is largely determined by sulfate uptake of the roots, the allocation of sulfate to the sites of sulfate reduction and assimilation, the reduction of sulfate to sulfide and its assimilation into reduced sulfur-containing amino acids and peptides, and the allocation of reduced sulfur to growing tissues that are unable to fulfill their own demand for reduced sulfur in growth and development. Association of the roots of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) trees with ectomycorrhizal fungi seems to interact with these processes of sulfur nutrition in different ways, but the result of these interactions is dependent on both the plant and the fungal partners. Mycorrhizal colonisation of the roots can alter the response of sulfate uptake to sulfate availability in the soil and enhances xylem loading and, hence, xylem transport of sulfate to the leaves. As a consequence, sulfate reduction in the leaves may increase. Simultaneously, sulfate reduction in the roots seems to be stimulated by ectomycorrhizal association. Increased sulfate reduction in the leaves of mycorrhizal trees can result in enhanced phloem transport of reduced sulfur from the leaves to the roots. Different from herbaceous plants, enhanced phloem allocation of reduced sulfur does not negatively affect sulfate uptake by the roots of trees. These interactions between mycorrhizal association and the processes involved in sulfur nutrition are required to provide sufficient amounts of reduced sulfur for increased protein synthesis that is used for the enhanced growth of trees frequently observed in response to ectomycorrhizal association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biddulph S F 1956 Visual indications of S35 and P32 translocation in the phloem. Am. J. Bot. 43, 143-148.

    Article  CAS  Google Scholar 

  • Blaschke L, Schneider A, Herschbach C and Rennenberg H 1996 Reduced sulphur allocation from three-year-old needles of Norway spruce (Picea abies [Karst] L.). J. Exp. Bot. 47, 1025-1032.

    CAS  Google Scholar 

  • Bücking H and Heyser W 1997 Intracellular compartmentation of phosphorus in roots of Pinus sylvestris L. and the implications for transfer processes in ectomycorrhizae. In Trees-Contributions to Modern Tree Physiology. Eds H Rennenberg, W Eschrich and H Ziegler. pp 377-391. Backhuys Publ., Leiden.

    Google Scholar 

  • Chalot M, Botton B and Banvoy L 1989 Growth, mineral nutrient content and nitrogen metabolism in Laccaria laccata-inoculated and non-inoculated Douglas fir seedlings during their growth period. Ann. Sci. For. 46, 711-714.

    Google Scholar 

  • Clarkson D T, Smith F W and Vanden Berg P J 1983 Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum, cv. siratro. J. Exp. Bot. 34, 1463-1483.

    CAS  Google Scholar 

  • Clarkson D T, Hawkesford M J and Davidian J-C 1993 Membrane and long-distance transport of sulfate. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Eds L J De Kok, I Stulen, H Rennenberg, C Brunold and W Rauser. pp 3-19. SPB Acad. Publ., The Hague.

    Google Scholar 

  • Cram J W 1990 Uptake and transport of sulfate. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants. H Rennenberg, C Brunold, L J De Kok and I Stulen. pp 3-11. SPB Acad. Publ., The Hague.

    Google Scholar 

  • Frank A B 1884 Die Bedeutung der Mykorrhizapilze für die gemeine Kiefer. Forstwiss. Ctrbl. 16, 1852-1890.

    Google Scholar 

  • Frank B 1885 Ñber die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber. Dtsch. Bot. Ges. 3, 128-145.

    Google Scholar 

  • Galli U, Meier M and Brunold C 1993 Effects of cadmium on nonmycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L.) Karst] and its ectomycorrhizal fungus Laccaria laccata (Scop. Ex Fr.) Bk. & Bk.: Sulphate reduction, thiols and distribution of heavy metal. New Phytol. 125, 837-843.

    Article  CAS  Google Scholar 

  • Geßler A, Schneider S, v. Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K and Rennenberg H 1998 Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138, 275-285.

    Article  Google Scholar 

  • Harley J L and Smith S E 1983 Mycorrhizal symbiosis. Acad. Press, London.

    Google Scholar 

  • Herschbach C and Rennenberg H 1991 Influence of glutathione (GSH) on sulphate influx, xylem loading and exudation in excised tobacco roots. J. Exp. Bot. 42, 1021-1029.

    CAS  Google Scholar 

  • Herschbach C and Rennenberg H 1994 Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J. Exp. Bot. 45, 1069-1076.

    CAS  Google Scholar 

  • Herschbach C and Rennenberg H 1996 Storage and re-mobilization of sulfur in beech trees (Fagus sylvatica). Physiol. Plant. 98, 125-132.

    Article  CAS  Google Scholar 

  • Herschbach C and Rennenberg H 1997 Sulfur nutrition of conifers and deciduous trees. In Trees-Contributions to Modern Tree Physiology. Eds H Rennenberg, W Eschrich and H Ziegler. pp 293-311. Backhuys Publ., Leiden.

    Google Scholar 

  • Herschbach C, Jouanin L and Rennenberg H 1998 Overexpression of γ-glutamylcysteine synthetase, but not of glutathione synthetase elevates glutathione allocation in the phloem of transgenic poplar (Populus tremula × P. alba) Plant Cell Physiol. 39, 447-451.

    CAS  Google Scholar 

  • Köstner B, Schupp R, Schulze E-D and Rennenberg H 1998 Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees. Tree Physiol. 18, 1-9.

    PubMed  Google Scholar 

  • Kreuzwieser J 1997 Sulfat-and Nitrattransport bei mykorrhizierten und nicht-mykorrhizierten Buchen (Fagus sylvatica L.). Ph.D Thesis, Universität Freiburg.

  • Kreuzwieser J, Herschbach C and Rennenberg H 1996 Sulfate uptake and xylem loading of non-mycorrhizal excised roots of young beech (Fagus sylvatica) trees. Plant Physiol. Biochem. 34, 409-416.

    CAS  Google Scholar 

  • Kreuzwieser J, Herschbach C and Rennenberg H 1997 SO 2-4 2_ 4</del> uptake by mycorrhizal (Laccaria laccata) and non-mycorrhizal roots of beech (Fagus sylvatica L.) trees. In Sulphur Metabolism in Higher Plants. Eds W J Cram, L J De Kok, I Stulen, C Brunold and H Rennenberg. pp 165-168.

  • Kreuzwieser J and Rennenberg H 1998 Sulphate uptake and xylem loading of mycorrhizal beech roots. New Phytol. 140, 319-329.

    Article  CAS  Google Scholar 

  • Lappartient A G and Touraine B 1996 Demand-driven control of root ATP sulfurylase activity and SO 2-4 -uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol. 111, 147-157.

    PubMed  CAS  Google Scholar 

  • Le Tacon F and Bouchard D 1986 Effects of different ectomycorrhizal fungi of larch, Douglas fir, Scots pine and Norway spruce seedlings in fumigated nursery soil. Acta Oecol. Appl. 7, 389-402.

    Google Scholar 

  • Marschner H and Dell B 1994 Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89-102.

    CAS  Google Scholar 

  • Martin F and Lorillou S 1997 Nitrogen acquisition and assimilation in ectomycorrhizal systems. In Trees-Contributions to Modern Tree Physiology. Eds H Rennenberg, W Eschrich and H Ziegler. pp 423-439. Backhuys Publ., Leiden.

    Google Scholar 

  • Mengel K 1993 Consequences of sulfur deficiency. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Eds L J De Kok, I Stulen, H Rennenberg, C Brunold and W Rauser. pp 207-210. SPB Acad. Publ., The Hague.

    Google Scholar 

  • Morrison T M 1962 Uptake of sulfur by mycorrhizal plants. New Phytol. 61, 21-27.

    Article  CAS  Google Scholar 

  • Morrison TM 1963 Uptake of sulfur by excised beech mycorrhizas. New Phytol. 62, 44-49.

    Article  Google Scholar 

  • Noctor G, Arisi A-C M, Jouanin L, Kunert K J, Rennenberg H and Foyer CH 1998 Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49, 623-647.

    Article  CAS  Google Scholar 

  • Rauser W E 1990 Phytochelatins. Annu. Rev. Biochem. 59, 61-86.

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H 1984 The fate of excess sulfur in higher plants. Annu. Rev. Plant Physiol. 35, 121-153.

    Article  CAS  Google Scholar 

  • Rennenberg H 1995 Processes involved in glutathione metabolism. In Amino Acids and Their Derivatives in Higher Plants. Eds R M Wallsgrove. pp 155-171. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Rennenberg H and Herschbach C 1996 Responses of plants to atmospheric sulfur. In Plant Response to Air Pollution. Eds M Yunus and M Iqbal. pp 285-293. J. Wiley, New York.

    Google Scholar 

  • Rennenberg H, Schupp R, Glavac V and Jochheim H 1994 Xylem sap composition of beech (Fagus sylvatica L.) trees: seasonal changes in the axial distribution of sulfur compounds. Tree Physiol. 14, 541-548.

    PubMed  CAS  Google Scholar 

  • Rennenberg H, Schneider S and Weber P 1996 Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. J. Exp. Bot. 47, 1491-1498.

    CAS  Google Scholar 

  • Schneider A, Schatten T and Rennenberg H 1994 Exchange between phloem and xylem during long distance transport of glutathione in spruce trees (Picea abies [Karst] L.). J. Exp. Bot. 45, 457-462.

    CAS  Google Scholar 

  • Schulte M, Herschbach C and Rennenberg H 1998 Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pedunculate oak trees (Quercus robur L.). Plant Cell Environ. 21, 917-926.

    Article  CAS  Google Scholar 

  • Schupp R and Rennenberg H 1988 Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci. 57, 113-117.

    Article  CAS  Google Scholar 

  • Schupp R, Schatten T, Willenbrink J and Rennenberg H 1992 Longdistance transport of reduced sulphur in spruce (Picea abies L.) J. Exp. Bot. 43, 1243-1250.

    CAS  Google Scholar 

  • Seegmüller S and Rennenberg H 1994 Interactive effects of mycorrhization and elevated carbon dioxide on growth of young pedunculate oak (Quercus robur L.) trees. Plant Soil 167, 325-329.

    Article  Google Scholar 

  • Seegmüller S, Schulte M, Herschbach C and Rennenberg H 1996 Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ. 19, 418-426.

    Article  Google Scholar 

  • Weber P, Stoermer H, Geßler A, Schneider S, v. Sengbusch D, Hanemann U and Rennenberg H 1998 Metabolic responses of Norway spruce (Picea abies L. Karst) trees to long-term forest managment practices and acute (NH4)2SO4 fertilization: Transport of soluble non-protein N compounds in xylem and phloem. New Phytol. 140, 461-475.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennenberg, H. The significance of ectomycorrhizal fungi for sulfur nutrition of trees. Plant and Soil 215, 115–122 (1999). https://doi.org/10.1023/A:1004459523021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004459523021

Navigation