Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding

Abstract

An important goal of nanotechnology is to assemble multiple molecules while controlling the spacing between them. Of particular interest is the phenomenon of multivalency, which is characterized by simultaneous binding of multiple ligands on one biological entity to multiple receptors on another1. Various approaches have been developed to engineer multivalency by linking multiple ligands together2,3,4. However, the effects of well-controlled inter-ligand distances on multivalency are less well understood. Recent progress in self-assembling DNA nanostructures with spatial and sequence addressability5,6,7,8,9,10,11,12 has made deterministic positioning of different molecular species possible8,11,12,13. Here we show that distance-dependent multivalent binding effects can be systematically investigated by incorporating multiple-affinity ligands into DNA nanostructures with precise nanometre spatial control. Using atomic force microscopy, we demonstrate direct visualization of high-affinity bivalent ligands being used as pincers to capture and display protein molecules on a nanoarray. These results illustrate the potential of using designer DNA nanoscaffolds to engineer more complex and interactive biomolecular networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the self-assembled divalent aptamers on a DNA tile for protein binding.
Figure 2: Gel-mobility shift assays.
Figure 3: Evaluation of bivalent binding by AFM.

Similar content being viewed by others

References

  1. Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2755–2794 (1998).

    Article  CAS  Google Scholar 

  2. Di Giusto, D. A. & King, G. C. Construction, stability, and activity of multivalent circular anticoagulant aptamers. J. Biol. Chem. 279, 46483–46489 (2004).

    Article  CAS  Google Scholar 

  3. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  Google Scholar 

  4. Pei, R. et al. Behaviour of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128, 12693–12699 (2006).

    Article  CAS  Google Scholar 

  5. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA sierpinski triangles. PloS. Biol. 2, 2041–2053 (2004).

    Article  CAS  Google Scholar 

  6. Lund, K., Liu, Y., Lindsay, S. & Yan, H. Self-assembling a molecular pegboard. J. Am. Chem. Soc. 127, 17606–17607 (2005).

    Article  CAS  Google Scholar 

  7. Liu, Y., Ke, Y. G. & Yan, H. Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 127, 17140–17141 (2005).

    Article  CAS  Google Scholar 

  8. Park, S. H. et al. Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angew. Chem. Int. Ed. 45, 735–739 (2006).

    Article  CAS  Google Scholar 

  9. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  10. Pistol, C. & Dwyer, C. Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology 18, 125305 (2007).

    Article  Google Scholar 

  11. Chhabra, R. et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129, 10304–10305 (2007).

    Article  CAS  Google Scholar 

  12. Ke, Y., Lindsay, S., Yung, C., Liu, Y. & Yan, H. Self-assembled water soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319, 180–183 (2008).

    Article  CAS  Google Scholar 

  13. Zheng, J. W. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  14. Nimjee, S. M., Rusconi, C. P. & Sullenger, B. A. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–583 (2005).

    Article  CAS  Google Scholar 

  15. Tasset, D. M., Kubik, M. F. & Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 272, 688–698 (1997).

    Article  CAS  Google Scholar 

  16. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  Google Scholar 

  17. Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E. & Tulinsky, A. The structure of alpha-thrombin inhibited by a 15-mer single-stranded-DNA aptamer. J. Biol. Chem. 268, 17651–17654 (1993).

    CAS  Google Scholar 

  18. Stubbs, M. T. & Bode, W. The clot thickens: clues provided by thrombin structure. Trends Biochem. Sci. 20, 23–28 (1995).

    Article  CAS  Google Scholar 

  19. Ke, Y., Liu, Y., Zhang, J. & Yan, H. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128, 4414–4421 (2006).

    Article  CAS  Google Scholar 

  20. Li, J., Fang, X. & Tan, W. Molecular aptamer beacons for real-time protein recognition. Biochem. Biophys. Res. Comm. 292, 31–40 (2002).

    Article  CAS  Google Scholar 

  21. Liu, Y., Lin, C., Li, H. & Yan, H. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew. Chem. Int. Ed. 44, 4333–4338 (2005).

    Article  CAS  Google Scholar 

  22. Williams, B. A. R., Lund, K., Liu, Y., Yan, H. & Chaput, J. C. Self-assembled peptide nanoarrays: an approach to studying protein–protein interactions. Angew. Chem. Int. Ed. 46, 3051–3054 (2007).

    Article  CAS  Google Scholar 

  23. Tumpane, J. et al. Triplex addressability as a basis for functional DNA nanostructures. Nano Lett. 7, 3832–3839 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was derived from a discussion of the synthetic antibody project with S.A. Johnston at the Biodesign Institute, Arizona State University. We also thank S. Lindsay, C. Diehnelt and Dong-Kyun Seo for helpful discussions. S.R. was partly supported by the Technology and Research Initiative Fund from Arizona State University to S.A. Johnston. This work was partly supported by grants from the National Science Foundation, the National Institute of Health, the Air Force Office of Scientific Research and the Office of Naval Research to Hao Yan and TRIF funds from Arizona State University to Hao Yan and Yan Liu.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and Y.L conceived the project. H.Y., Y.L, S.R. and Y.K. designed the experiments. S.R., Y.K. and R.C. performed the experiments. H.Y., Y.L., S.R. and Y.K. analysed the data. H.Y., Y.L. and S.R. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yan Liu or Hao Yan.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinker, S., Ke, Y., Liu, Y. et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech 3, 418–422 (2008). https://doi.org/10.1038/nnano.2008.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing