Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

cDNA library generation from ribonucleoprotein particles

Abstract

Most, if not all, known noncoding RNAs (ncRNAs) are associated with RNA binding proteins, thus forming ribonucleoprotein particles or RNPs. Here we describe a protocol for the generation of a specialized cDNA library from RNPs, thereby increasing the proportion of functional ncRNA species in the library. To that end, cellular extracts are fractionated on 10–30% glycerol gradients. Subsequently, RNP-derived ncRNAs are isolated and 3′-tailed by cytidine triphosphate and poly(A) polymerase; this is followed by 5′ adapter ligation by T4 RNA ligase. Reverse transcription of ncRNAs into cDNAs is carried out with an oligo-d(G) anchor primer. The generated cDNA libraries are subsequently submitted to high-throughput sequencing. This RNP selection procedure increases the probability of the presence of biologically relevant ncRNA species in the library compared with libraries generation methods that use size-selected, protein-devoid ncRNAs. The protocol enables the generation of deep-sequencing–compatible cDNA libraries that code for functional ncRNAs within 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Distribution of cDNA sequences generated from sequencing of libraries raised from mouse brain cells.

Similar content being viewed by others

References

  1. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  2. Mattick, J.S. & Makunin, I.V. Small regulatory RNAs in mammals. Hum. Mol. Genet. 14 Spec No 1: R121–R132 (2005).

    Article  CAS  Google Scholar 

  3. Willingham, A.T. & Gingeras, T.R. TUF love for 'junk' DNA. Cell 125, 1215–1220 (2006).

    Article  CAS  Google Scholar 

  4. Huttenhofer, A., Schattner, P. & Polacek, N. Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005).

    Article  Google Scholar 

  5. Brosius, J. Waste not, want not—transcript excess in multicellular eukaryotes. Trends Genet. 21, 287–288 (2005).

    Article  CAS  Google Scholar 

  6. Eddy, S.R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001).

    Article  CAS  Google Scholar 

  7. Huttenhofer, A. & Schattner, P. The principles of guiding by RNA: chimeric RNA-protein enzymes. Nat. Rev. Genet. 7, 475–482 (2006).

    Article  Google Scholar 

  8. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  9. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  10. Bachellerie, J.P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world. Biochimie 84, 775–790 (2002).

    Article  CAS  Google Scholar 

  11. Rederstorff, M. et al. RNPomics: defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles. Nucleic Acids Res. 38, e113 (2010).

    Article  Google Scholar 

  12. Huttenhofer, A., Brosius, J. & Bachellerie, J.P. RNomics: identification and function of small, non-messenger RNAs. Curr. Opin. Chem. Biol. 6, 835–843 (2002).

    Article  CAS  Google Scholar 

  13. Huttenhofer, A., Cavaille, J. & Bachellerie, J.P. Experimental RNomics: a global approach to identifying small nuclear RNAs and their targets in different model organisms. Methods Mol. Biol. 265, 409–428 (2004).

    PubMed  Google Scholar 

  14. Huttenhofer, A. & Vogel, J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res. 34, 635–646 (2006).

    Article  Google Scholar 

  15. Jochl, C. et al. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 36, 2677–2689 (2008).

    Article  Google Scholar 

  16. Lung, B. et al. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 34, 3842–3852 (2006).

    Article  CAS  Google Scholar 

  17. Madej, M.J., Alfonzo, J.D. & Huttenhofer, A. Small ncRNA transcriptome analysis from kinetoplast mitochondria of Leishmania tarentolae. Nucleic Acids Res. 35, 1544–1554 (2007).

    Article  CAS  Google Scholar 

  18. Mrazek, J., Kreutmayer, S.B., Grasser, F.A., Polacek, N. & Huttenhofer, A. Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res. 35, e73 (2007).

    Article  Google Scholar 

  19. Mercer, T.R., Dinger, M.E. & Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159 (2009).

    Article  CAS  Google Scholar 

  20. Kapranov, P. et al. Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res. 15, 987–997 (2005).

    Article  CAS  Google Scholar 

  21. Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  Google Scholar 

  22. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  23. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  24. Fullwood, M.J., Wei, C.L., Liu, E.T. & Ruan, Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 19, 521–532 (2009).

    Article  CAS  Google Scholar 

  25. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  26. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  27. Huttenhofer, A. et al. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO. J. 20, 2943–2953 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical University of Innsbruck and the Austrian Genome Research (GEN-AU; http://www.gen-au.at/) funding program (grants D-110420-011-013 and D-11420-011-015 to A.H.). We acknowledge M. Lukasser, K. Skreka and M. Erlacher for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.R. designed and performed the experiments and wrote the manuscript. A.H. designed the experiments and edited the manuscript.

Corresponding author

Correspondence to Mathieu Rederstorff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rederstorff, M., Hüttenhofer, A. cDNA library generation from ribonucleoprotein particles. Nat Protoc 6, 166–174 (2011). https://doi.org/10.1038/nprot.2010.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.186

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing