Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial nucleoid-associated proteins, nucleoid structure and gene expression

Key Points

  • The bacterial nucleoid is dynamic in nature and undergoes changes in its local and global structure as a result of DNA replication, DNA recombination and gene expression.

  • Nucleoid-associated proteins (NAPs) contribute to both the organization of the nucleoid and the control of gene expression, and it is becoming evident that NAPs and transcription act in concert to confer structure on the bacterial genome.

  • NAPs vary in the manner in which they interact with DNA, and their different binding modes facilitate positive or negative influences on transcription and also have different effects on the shape of the genetic material in the nucleoid. The bending, wrapping and bridging of DNA by NAPs contribute to the development of simple regulatory switches that control gene expression and recombination.

  • Some transcription factors such as cyclic AMP–cAMP regulatory protein (Crp), which have been classified previously as conventional transcription factors that make highly specific contacts with RNA polymerase to control transcription initiation, have been found to bind far more widely in the genome than was previously believed. This suggests that the boundary between NAPs and at least some transcription factors may be blurred and that bacteria possess a population of different DNA-binding proteins with a spectrum of DNA-binding activities.

  • Recent insights into the biology of NAPs, their roles in gene regulation and their relationships with horizontally acquired DNA are deepening our understanding of the contributions that NAPs have made, and are still making, to the evolution of the nucleoid and to the operations of the gene expression programmes therein.

Abstract

Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleoid-associated proteins and DNA supercoiling influence nucleoid structure.
Figure 2: Antagonistic DNA-binding modes of nucleoid-associated proteins.
Figure 3: Nucleoid-associated protein secondary structure and domain organization.
Figure 4: Complex regulation of transcription by multiple nucleoid-associated proteins.

Similar content being viewed by others

References

  1. Drlica, K. & Rouvière-Yaniv, J. Histone-like proteins of bacteria. Microbiol. Rev. 51, 301–319 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Dorman, C. J. & Deighan, P. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. 13, 179–184 (2003).

    Article  CAS  Google Scholar 

  3. Deng, S., Stein, R. A. & Higgins, N. P. Organization of supercoil domains and their reorganization by transcription. Mol. Microbiol. 57, 1511–1521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stein, R. A., Deng, S. & Higgins, N. P. Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol. Microbiol. 56, 1049–1061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hillebrand, A., Wurm, R., Menzel, A. & Wagner, R. The seven E. coli rRNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol. Chem. 386, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Potrykus, K. & Cashel, M. (p)ppGpp, still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Rutherford, S. T., Villers, C. L., Lee, J. H., Ross, W. & Gourse, R. L. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23, 236–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin, D. J. & Cabrera, J. E. Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli. J. Struct. Biol. 156, 284–291 (2006). This paper describes the use of imaging techniques to monitor the formation of transcription factories in the E. coli nucleoid.

    Article  CAS  PubMed  Google Scholar 

  10. Marenduzzo, D., Faro-Trindade, I. & Cook, P. R. What are the molecular ties that maintain genomic loops? Trends Genet. 23, 126–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hardy, C. D. & Cozzarelli, N. R. A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol. Microbiol. 57, 1636–1652 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Noom, M. C., Navarre, W. W., Oshima, T., Wuite, G. J. & Dame, R. T. H-NS promotes looped domain formation in the bacterial chromosome. Curr. Biol. 17, R913–R914 (2007). This article and reference 11 propose a role for H-NS in chromosomal loop formation and maintenance on the basis of a genetic analysis and whole-genome protein-binding data, respectively.

    Article  CAS  PubMed  Google Scholar 

  13. Grainger, D. C., Hurd, D., Goldberg, M. D. & Busby, S. W. J. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res. 34, 4642–4652 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oshima, T., Ishikawa, S., Kurokawa K., Aiba, H. & Ogasawara, N. Escherichia coli histone-like protein H-NS binds to horizontally acquired DNA in association with RNA polymerase. DNA Res. 13, 141–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Lucchini, S. et al. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2, e81 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Navarre, W. W. et al. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236–238 (2006). This work and that in reference 15 provide evidence that H-NS participates in a process called xenogeneic silencing to down-regulate horizontally acquired genes.

    Article  CAS  PubMed  Google Scholar 

  17. Schneider, R. et al. An architectural role of the Escherichia coli chromatin protein FIS in organizing DNA. Nucleic Acids Res. 29, 5107–5114 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimmerman, S. B. Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase. J. Struct. Biol. 153, 160–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Dame R. T., Noom, M. C. & Wuite, G. J. Bacterial chromatin organization by H-NS protein unraveled using dual DNA manipulation. Nature 444, 387–390 (2006). A single-molecule study of H-NS-mediated bridging in DNA.

    Article  CAS  PubMed  Google Scholar 

  20. Hada, K. et al. Crystal structure and functional analysis of an archaeal chromatin protein Alba from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biosci. Biotechnol. Biochem. 72, 749–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Luijsterburg, M. S., White, M. F., van Driel, R. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Dame, R. T., Wyman, C., Wurm, R., Wagner, R. & Goosen, N. Structural basis of H-NS-mediated trapping of RNA polymerase in the open initiation complex at rrnB P1. J. Biol. Chem. 277, 2146–2150 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Stoebel, D. M., Free, A. & Dorman, C. J. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative bacteria. Microbiol. 154, 2533–2545 (2008).

    Article  CAS  Google Scholar 

  24. Gordon, B. R., Imperial, R., Wang, L., Navarre, W. W. & Liu, J. Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J. Bacteriol. 190, 7052–7059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nye, M. B. & Taylor, R. K. Vibrio cholerae H-NS domain structure and function with respect to transcriptional repression of ToxR regulon genes reveals differences among H-NS family members. Mol. Microbiol. 50, 427–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Castang, S., McManus, H. R., Turner, K. H. & Dove, S. L. H-NS family members function coordinately in an opportunistic pathogen. Proc. Natl Acad. Sci. USA 105, 18947–18952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Timchenko, T., Bailone, A. & Deverot, R. BtcD, a mouse protein that binds to curved DNA, can substitute in Escherichia coli for H-NS, a bacterial nucleoid protein. EMBO J. 15, 3986–3992 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinton, J. C. D. et al. Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol. Microbiol. 6, 2327–2337 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, A., Rimsky, S., Reaban, M. E., Buc, H. & Belfort, M. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. 15, 1340–1349 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maurer, S., Fritz, J. & Muskhelishvili, G. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. J. Mol. Biol. 387, 1261–1276 (2009). This study uses protein–DNA imaging techniques to analyze different NAP–DNA structures in vitro.

    Article  CAS  PubMed  Google Scholar 

  31. Higgins, C. F. et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52, 569–584 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Mayer, O., Rajkowitsch, L., Lorenz, C., Konrat, R. & Schröder, R. RNA chaperone activity and RNA binding properties of the E. coli protein StpA. Nucleic Acids Res. 35, 1257–1269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dorman, C. J. H-NS, a universal regulator for a dynamic genome. Nature Rev. Microbiol. 2, 391–400 (2004).

    Article  CAS  Google Scholar 

  34. Müller, C. M. et al. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J. Bacteriol. 188, 5428–5438 (2006).

    PubMed  Google Scholar 

  35. Madrid, C., Balsalobre, C., Garcia, J. & Juárez, A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol. Microbiol. 63, 7–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Claret, L. & Rouvière-Yaniv, J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J. Mol. Biol. 273, 93–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Vis, H. et al. Solution structure of the HU protein from Bacillus stearothermophilus. J. Mol. Biol. 254, 692–703 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee, A., DiMario, P. J. & Grove, A. Mycobacterium smegmatis histone-like protein is nucleoid associated. FEMS Microbiol. Lett. 291, 232–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Castaing, B., Zelwer, C., Laval, J. & Bioteux, S. HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J. Biol. Chem. 270, 10291–10296 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Broyles, S. S. & Pettijohn, D. E. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 187, 47–60 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Oberto, J., Nabti, S., Jooste, V., Mignot, H. & Rouvière-Yaniv, J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4, e4367 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Guo, F. & Adhya, S. Spiral structure of Escherichia coli HUαβ provides foundation for DNA supercoiling. Proc. Natl. Acad. Sci. USA 104, 4309–4314 (2007). This paper discusses how higher-order forms of HU can direct the path of DNA in the nucleoid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Becker, N. A., Kahn, J. D. & Maher, L. M. III. Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res. 35, 3988–4000 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Mumm, J. P., Landy, A. & Gelles, J. Viewing single λ site-specific recombination events from start to finish. EMBO J. 25, 4586–4595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Swinger, K. K. & Rice, P. A. IHF and HU: flexible architects of bent DNA. Curr. Opin. Struct. Biol. 14, 28–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Mangan, M. W. et al. The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 59, 1831–1847 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Arfin, S. M. et al. Global gene expression profiling in Escherichia coli K-12. The effects of integration host factor. J. Biol. Chem. 275, 29672–29684 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Macchi, R. et al. Recruitment of σ54-RNA polymerase to the Pu promoter of Pseudomonas putida through integration host factor-mediated positioning switch of α subunit carboxyl-terminal domain on an UP-like element. J. Biol. Chem. 278, 27695–27702 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Santero, E. et al. Role of integration host factor in stimulating transcription from the σ54-dependent nifH promoter. J. Mol. Biol. 227, 602–620 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Sheridan, S. D., Benham, C. J. & Hatfield, G. W. Activation of gene expression by a novel DNA structural transmission mechanism that requires supercoiling-induced DNA duplex destabilization in an upstream activating sequence. J. Biol. Chem. 273, 21298–21308 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Benham, C. J. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. Proc. Natl Acad. Sci. USA 90, 2999–3003 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Opel, M. L. et al. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol. Microbiol. 53, 655–674 (2004). This article and reference 50 describe promoter activation at a distance through a mechanism involving transmission of DNA twist energy following NAP binding.

    Article  CAS  Google Scholar 

  53. Muskhelishvili, G., Buckle, M., Heumann, H., Kahmann, R. & Travers, A. A. FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J. 16, 3655–3665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leonard, A. C. & Grimwade, J. E. Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding. Mol. Microbiol. 55, 978–985 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nozaki, S., Yamada, Y. & Ogawa, T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 14, 329–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Haniford, D. B. Transpososome dynamics and regulation in Tn10 transposition. Crit. Rev. Biochem. Mol. Biol. 41, 407–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Niki, H., Jaffé, A., Imamura, R., Ogura, T. & Hiraga, S. The new gene mukB codes for a 177 kD protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10, 183–193 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Sawitzke, J. A. & Austin, S. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc. Natl Acad. Sci. USA 97, 1671–1676 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petrushenko, Z. M., Lai, C.-H., Rai, R. & Rybenkov, V. V. DNA reshaping by MukB: right-handed knotting, left-handed supercoiling. J. Biol. Chem. 281, 4606–4615 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Weitao, T., Nordstrom, K. & Dasgupta, S. Escherichia coli cell cycle control genes affect chromosome superhelicity. EMBO Rep. 1, 494–499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsu, Y.-H., Chung, M.-W. & Li, T.-K. Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization. Nucleic Acids Res. 34, 3128–3138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho, B.-W., Barrett, C. L. Knight, E. M., Park, Y. S. & Palsson, B. Ø. Genome scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 19462–19467 (2008). A very thorough genome-wide analysis of a NAP regulon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cui, Y., Wang, Q., Stormo, G. D. & Calvo, J. M. A consensus sequence for binding of Lrp to DNA. J. Bacteriol. 177, 4872–4880 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Q. & Calvo, J. M. Lrp, a major regulatory protein in Escherichia coli, bends DNA and can organize the assembly of a higher order nucleoprotein structure. EMBO J. 12, 2495–2501 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, S. & Calvo, J. M. Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J. Mol. Biol. 318, 1031–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Willins, D. A., Ryan, C. W., Platko, J. V. & Calvo, J. M. Characterization of Lrp, an Escherichia coli regulatory protein that mediates a global response to leucine. J. Biol. Chem. 266, 10768–10774 (1991).

    CAS  PubMed  Google Scholar 

  67. Leonard, P. M. et al. Crystal structure of the Lrp like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J. 20, 990–997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thaw, P. et al., Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res. 34, 1439–1449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de los Rios, S. & Perona, J. J. Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J. Mol. Biol. 366, 1589–1602 (2007). This study determines the higher-order organization of the Lrp protein and shows the sensitivity of this structure to leucine.

    Article  CAS  PubMed  Google Scholar 

  70. McFarland, K. A., Lucchini, S., Hinton, J. C. D. & Dorman, C. J. The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene. J. Bacteriol. 190, 602–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Beloin, C. et al. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J. Biol. Chem. 278, 5333–5342 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Tapias, A., Lopez, G. & Ayora, S. Bacillus subtilis LrpC is a sequence-independent DNA-binding and DNA-bending protein which bridges DNA. Nucleic Acids Res. 28, 552–559 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pul, U., Wurm, R. & Wagner, R. The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J. Mol. Biol. 366, 900–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Landgraf, J. R., Wu, J. & Calvo, J. M. Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J. Bacteriol. 178, 6930–6936 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bradley, M. D., Beach, M. B., de Koning, A. P., Pratt, T. S. & Osuna, R. Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153, 2922–2944 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Kelly, A. et al. A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 150, 2037–2053 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Cho, B. K., Knight, E. M. Barrett, C. L. & Palsson, B. Ø. Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res. 18, 900–910 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan, C. Q. et al. Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. J. Mol. Biol. 264, 675–695 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Skoko, D. et al. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. J. Mol. Biol. 364, 777–798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dorman, C. J. Nucleoid-associated proteins and bacterial physiology. Adv. Appl. Microbiol. 67, 47–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Pedersen, A. G., Jensen, L. J., Brunak, S., Staerfeldt, H. H. & Ussery, D. W. A DNA structural atlas for Escherichia coli. J. Mol. Biol. 299, 907–930 (2000).

    CAS  PubMed  Google Scholar 

  82. Grainger, D. C., Goldberg, M. D., Lee, D. J. & Busby, S. J. W. Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol. Microbiol. 68, 1366–1377 (2008). This paper elegantly illustrates the complex transcriptional control achieved by NAPs.

    Article  CAS  PubMed  Google Scholar 

  83. Schneider, R., Travers, A., Kutateladze, T. & Muskhelishvili, G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol. Microbiol. 34, 953–964 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. McLeod, S. M., Aiyar, S. E., Gourse, R. L. & Johnson, R. C. The C-terminal domains of the RNA polymerase α subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J. Mol. Biol. 316, 517–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Auner, H. et al. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J. Mol. Biol. 331, 331–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Mallik, P. et al. Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fisP) in Escherichia coli. J. Bacteriol. 186, 122–135 (2004).

    CAS  PubMed  Google Scholar 

  87. Dennis, P. P., Ehrenberg, M. & Bremer, H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol. Mol. Biol. Rev. 68, 639–668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weinstein-Fischer, D. & Altuvia, S. Differential regulation of Escherichia coli topoisomerase I by Fis. Mol. Microbiol. 63, 1131–1144 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Rochman, M. et al. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol. Microbiol. 53, 143–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hirsch, M. & Elliott, T. Fis regulates transcriptional induction of RpoS in Salmonella enterica. J. Bacteriol. 187, 1568–1580 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ó Cróinín, T. & Dorman, C. J. Expression of the Fis protein is sustained in late exponential and early stationary phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol. Microbiol. 66, 237–251 (2007).

    Article  PubMed  CAS  Google Scholar 

  92. Chenoweth, M. R. & Wickner, S. Complex regulation of the DnaJ homolog CbpA by the global regulators σS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM. J. Bacteriol. 190, 5153–5161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Riley, S. P. et al. Borrelia burgdorferi EbfC defines a newly-identified, widespread family of bacterial DNA-binding proteins. Nucleic Acids Res. 37, 1973–1983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6, 2646–2654 (1992).

    CAS  PubMed  Google Scholar 

  95. Gottesman, S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Deighan, P., Beloin, C. & Dorman, C. J. Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol. Microbiol. 48, 1401–1416 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Falconi, M., Brandi, A., La Teana, A., Gualerzi, C. O. & Pon, C. L. Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol. Microbiol. 189, 965–975 (1996).

    Article  Google Scholar 

  98. McFarland, K. A. & Dorman, C. J. Autoregulated expression of the gene coding for the leucine-responsive protein, Lrp, a global regulator in Salmonella enterica serovar Typhimurium. Microbiol. 154, 2008–2016 (2008).

    Article  CAS  Google Scholar 

  99. Free, A. & Dorman, C. J. The Escherichia coli stpA gene is transiently expressed during growth in rich medium and is induced in minimal medium and by stress conditions. J. Bacteriol. 179, 909–918 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Browning, D. F. & Busby, S. J. W. The regulation of bacterial transcription initiation. Nature Rev. Microbiol. 2, 57–65 (2004).

    Article  CAS  Google Scholar 

  101. Grainger, D. C., Hurd, D., Harrison, M., Holdstock, J. & Busby, S. J. W. Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl Acad. Sci. USA 102, 17693–17698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Azam, T. A. & Ishihama, A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Lu M., Campbell, J. L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

    CAS  PubMed  Google Scholar 

  104. Prieto, A. et al. The GATC-binding protein SeqA is required for bile resistance and virulence in Salmonella enterica serovar Typhimurium. J. Bacteriol. 189, 8496–8502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hwang, D. S. & Kornberg, A. Opposed actions of regulatory proteins, DnaA and IciA, in opening the replication origin of Escherichia coli. J. Biol. Chem. 267, 23087–23091 (1992).

    CAS  PubMed  Google Scholar 

  106. Free, A. & Dorman, C. J. Coupling of Escherichia coli hns mRNA levels to DNA synthesis by autoregulation: implications for growth phase control. Mol. Microbiol. 18, 101–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Doyle, M. & Dorman, C. J. Reciprocal transcriptional and posttranscriptional growth-phase-dependent expression of sfh, a gene that encodes a paralogue of the nucleoid-associated protein H-NS. J. Bacteriol. 188, 7581–7591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tchieu, J. H., Norris, V., Edwards, J. S. & Saier, M. H. Jr. The complete phosphotransferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3, 329–346 (2001).

    CAS  PubMed  Google Scholar 

  109. Liang, W., Pascual-Montano, A., Silva, A. J. & Benitez, J. A. The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology 153, 2964–2975 (2007).

    CAS  PubMed  Google Scholar 

  110. Stavans, J. & Oppenheim, A. B. DNA-protein interactions and bacterial chromosome architecture. Phys. Biol. 3, R1–R10 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Travers, A. & Muskhelishvili, G. Bacterial chromatin. Curr. Opin. Genet. Dev. 15, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Dorman, C. J. DNA supercoiling and bacterial gene expression. Sci. Prog. 89, 151–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Rost, B., Yachdav, G. & Liu, J. The PredictProtein Server. Nucleic Acids Res. 32, W321–W326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

    Google Scholar 

  115. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Zhou, Y. B., Gerchman, S. E., Ramakrishnan, V., Travers, A. & Muyldermans, S. Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395, 402–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Ivanov, D. & Nasmyth, K. A topological interaction between cohesin rings and a circular minichromosome. Cell 122, 849–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Paull, T. T., Haykinson, M. J. & Johnson, R. C. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7, 1521–1534 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Decanniere, K., Babu, A. M., Sandman, K., Reeve, J. N. & Heinemann, U. Crystal structures of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon Methanothermus fervidus. J. Mol. Biol. 303, 35–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Leonard, P. M. et al. Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J. 20, 990–997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cam, E. L., Culard, F., Larquet, E., Delain, E. & Cognet, J. A. DNA bending induced by the archaebacterial histone-like protein MC1. J. Mol. Biol. 285, 1011–1021 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Esser, D., Rudolph, R., Jaenicke, R. & Bohm, G. The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J. Mol. Biol. 291, 1135–1146 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Herrmann, U. & Soppa, J. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol. Microbiol. 46, 395–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Peeters, E., Willaert, R., Maes, D. & Charlier, D. Ss-LrpB from Sulfolobus solfataricus condenses about 100 base pairs of its own operator DNA into globular nucleoprotein complexes. J. Biol. Chem. 281, 11721–11728 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Guo, L. et al. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res. 36, 1129–1137 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Robinson, H. et al. The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392, 202–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Edmondson, S. P., Kahsai, M. A., Gupta, R. & Shriver, J. W. Characterization of Sac10a, a hyperthermophile DNA-binding protein from Sulfolobus acidocaldarius. Biochemistry 43, 13026–13036 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Elie, C., Baucher, M. F., Fondrat, C. & Forterre, P. A protein related to eucaryal and bacterial DNA-motor proteins in the hyperthermophilic archaeon Sulfolobus acidocaldarius. J. Mol. Evol. 45, 107–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Luo, X. et al. CC1, a novel crenarchaeal DNA binding protein. J. Bacteriol. 189, 403–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Shimizu, M., Miyake M., Kanke, F., Matsumoto, U. & Shindo, H. Characterization of the binding of HU and IHF, homologous histone-like proteins of Escherichia coli, to curved and uncurved DNA. Biochim. Biophys. Acta 1264, 330–336 (1995).

    Article  PubMed  Google Scholar 

  131. Britton, R. A., Lin, D. C. & Grossman, A. D. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12, 1254–1259 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Morikawa, K. et al. Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus. Genes Cells 11, 409–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Liu, Y., Chen, H., Kenney, L. J. & Yan, J. A divalent switch drives H-NS/DNA binding conformations between stiffening and bridging modes. Genes Dev. (in the press).

Download references

Acknowledgements

We thank N. Ní Bhriain for critical comments on the manuscript. Work in the authors' laboratory is supported by grants from Science Foundation Ireland and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Dorman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Borrelia burgdorferi

Escherichia coli

Geobacillus stearothermophilus

Haemophilus influenzae

Mycobacterium tuberculosis

Pseudomonas aeruginosa

Salmonella enterica

Vibrio cholerae

FURTHER INFORMATION

Author's homepage

Pfam

Glossary

Stable RNA genes

Genes that code for ribosomal RNA (rRNA) and tRNA. Compared with mRNA, rRNA and tRNA are chemically very stable.

Superhelical density

The average number of superhelical turns per helical turn of the DNA, usually abbreviated as σ.

Transcription factories

Foci in the nucleoid where highly transcribed promoters, such as those of the ribosomal RNA genes, coalesce during periods of high transcriptional activity.

DNA bridging

Pertaining to a protein that binds to two distinct DNA molecules or different portions of the same DNA molecule simultaneously through two DNA-binding domains, producing a DNA–protein–DNA bridge.

Plectonemically supercoiled DNA

DNA with a braided or interwound appearance caused by the addition or removal of helical turns in topologically closed double-stranded DNA.

DNA writhe

This approximates to our intuitive sense of DNA supercoiling. When helical turns are added to or subtracted from relaxed DNA, the DNA adopts a minimum energy state by winding the helical axis about itself.

Duplex slithering

In the absence of constraints (for example, due to protein binding), the DNA duplex is free to migrate in the plectonemically interwound, supercoiled structure by adopting a slithering motion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, S., Dorman, C. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8, 185–195 (2010). https://doi.org/10.1038/nrmicro2261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing