Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ureteral stent-associated complications—where we are and where we are going

Key Points

  • Ureteral stents are associated with complications including infection, encrustation, haematuria and discomfort that can be caused by tissue irritation

  • The role of bacterial adhesion and biofilm formation on stents in stent-associated UTIs is unclear and development of UTIs and their treatment might depend on patient immune status

  • Encrustation and calcification are common problems that can lead to severe complications, which can be prevented by implementing electronic systems to monitor stent dwell times

  • Metal stents are a good alternative to polymer stents in the treatment of extrinsically caused ureteral obstruction; flexible and drug-eluting metal designs could help ameliorate discomfort and stenosis, respectively

  • Biodegradable ureteral stents could avoid complications, such as encrustation, but flaws in their biocompatibility still need to be addressed

  • Future stent design will focus on biodegradable and metal stents that elute drugs to prevent complications and are engineered to treat specific urological conditions

Abstract

Ureteral stents are one of the most commonly used devices in the treatment of benign and malignant urological diseases. However, they are associated with common complications including encrustation, infection, pain and discomfort caused by ureteral tissue irritation and possibly irregular peristalsis. In addition, stent migration and failure due to external compression by malignancies or restenosis occur, albeit less frequently. As these complications restrict optimal stent function, including maintenance of adequate urine drainage and alleviation of hydronephrosis, novel stent materials and designs are required. In recent years, progress has been made in the development of drug-eluting expandable metal stents and biodegradable stents. New engineering technologies are being investigated to provide stents with increased biocompatibility, decreased susceptibility to encrustation and improved drug-elution characteristics. These novel stent characteristics might help eliminate some of the common complications associated with ureteral stenting and will be an important step towards understanding the behaviour of stents within the urinary tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance and insertion of metal stents studied for use in the ureter.

Similar content being viewed by others

References

  1. Finney, R. P. Experience with new double J ureteral catheter stent. J. Urol. 120, 678–681 (1978).

    CAS  PubMed  Google Scholar 

  2. Joshi, H. B. et al. Ureteral stent symptom questionnaire: development and validation of a multidimensional quality of life measure. J. Urol. 169, 1060–1064 (2003).

    CAS  PubMed  Google Scholar 

  3. Giannarini, G. et al. Predictors of morbidity in patients with indwelling ureteric stents: results of a prospective study using the validated Ureteric Stent Symptoms Questionnaire. BJU Int. 107, 648–654 (2011).

    PubMed  Google Scholar 

  4. Al-Kandari, A. M. et al. Effects of proximal and distal ends of double-J ureteral stent position on postprocedural symptoms and quality of life: a randomized clinical trial. J. Endourol. 21, 698–702 (2007).

    PubMed  Google Scholar 

  5. Chew, B. H. et al. Pilot study of ureteral movement in stented patients: first step in understanding dynamic ureteral anatomy to improve stent comfort. J. Endourol. 21, 1069–1075 (2007).

    PubMed  Google Scholar 

  6. Ramsay, J. W. et al. The effects of double J stenting on unobstructed ureters. An experimental and clinical study. Br. J. Urol. 57, 630–634 (1985).

    CAS  PubMed  Google Scholar 

  7. Venkatesh, R. et al. Impact of a double-pigtail stent on ureteral peristalsis in the porcine model: initial studies using a novel implantable magnetic sensor. J. Endourol. 19, 170–176 (2005).

    PubMed  Google Scholar 

  8. Kinn, A. C. & Lykkeskov-Andersen, H. Impact on ureteral peristalsis in a stented ureter. An experimental study in the pig. Urol. Res. 30, 213–218 (2002).

    PubMed  Google Scholar 

  9. Dunn, C. J., Matheson, A. & Faulds, D. M. Tamsulosin: a review of its pharmacology and therapeutic efficacy in the management of lower urinary tract symptoms. Drugs Aging 19, 135–161 (2002).

    CAS  PubMed  Google Scholar 

  10. Davenport, K., Timoney, A. G. & Keeley, F. X. A comparative in vitro study to determine the beneficial effect of calcium-channel and α1-adrenoceptor antagonism on human ureteric activity. BJU Int. 98, 651–655 (2006).

    CAS  PubMed  Google Scholar 

  11. Rajpathy, J. et al. An in vitro study on human ureteric smooth muscle with the α1-adrenoceptor subtype blocker, tamsulosin. BJU Int. 102, 1743–1745 (2008).

    PubMed  Google Scholar 

  12. Damiano, R. et al. Effect of tamsulosin in preventing ureteral stent-related morbidity: a prospective study. J. Endourol. 22, 651–656 (2008).

    PubMed  Google Scholar 

  13. Wang, C. J., Huang, S. W. & Chang, C. H. Effects of specific α-1A/1D blocker on lower urinary tract symptoms due to double-J stent: a prospectively randomized study. Urol. Res. 37, 147–152 (2009).

    CAS  PubMed  Google Scholar 

  14. Beddingfield, R. et al. Alfuzosin to relieve ureteral stent discomfort: a prospective, randomized, placebo controlled study. J. Urol. 181, 170–176 (2009).

    PubMed  Google Scholar 

  15. Deliveliotis, C. et al. Is there a role for α1-blockers in treating double-J stent-related symptoms? Urology 67, 35–39 (2006).

    PubMed  Google Scholar 

  16. Damiano, R. et al. Does the size of ureteral stent impact urinary symptoms and quality of life? A prospective randomized study. Eur. Urol. 48, 673–678 (2005).

    PubMed  Google Scholar 

  17. Erturk, E., Sessions, A. & Joseph, J. V. Impact of ureteral stent diameter on symptoms and tolerability. J. Endourol. 17, 59–62 (2003).

    PubMed  Google Scholar 

  18. Pryor, J., Carey, P. & Lippert, M. Migration of silicone ureteral catheters. J. Endourol. 2, 283–286 (1988).

    Google Scholar 

  19. Jeon, S. S., Choi, Y. S. & Hong, J. H. Determination of ideal stent length for endourologic surgery. J. Endourol. 21, 906–910 (2007).

    PubMed  Google Scholar 

  20. el-Faqih, S. R. et al. Polyurethane internal ureteral stents in treatment of stone patients: morbidity related to indwelling times. J. Urol. 146, 1487–1491 (1991).

    CAS  PubMed  Google Scholar 

  21. Nagele, U., Praetorius, M., Schilling, D., Stenzl, A. & Anastasiadis, A. G. Comparison of flexible grasping forceps and stone basket for removal of retracted ureteral stents. J. Endourol. 20, 418–422 (2006).

    PubMed  Google Scholar 

  22. Livadas, K. E. et al. Ureteroscopic removal of mildly migrated stents using local anesthesia only. J. Urol. 178, 1998–2001 (2007).

    PubMed  Google Scholar 

  23. LeRoy, A. J., Williams, H. J. Jr, Segura, J. W., Patterson, D. E. & Benson, R. C. Jr. Indwelling ureteral stents: percutaneous management of complications. Radiology 158, 219–222 (1986).

    CAS  PubMed  Google Scholar 

  24. Kehinde, E. O. et al. Bacteriology of urinary tract infection associated with indwelling J ureteral stents. J. Endourol. 18, 891–896 (2004).

    PubMed  Google Scholar 

  25. Reid, G., Denstedt, J. D., Kang, Y. S., Lam, D. & Nause, C. Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J. Urol. 148, 1592–1594 (1992).

    CAS  PubMed  Google Scholar 

  26. Schierholz, J. M., Beuth, J. & Pulverer, G. Silver coating of medical devices for catheter-associated infections? Am. J. Med. 107, 101–102 (1999).

    CAS  PubMed  Google Scholar 

  27. Tieszer, C., Reid, G. & Denstedt, J. Conditioning film deposition on ureteral stents after implantation. J. Urol. 160, 876–881 (1998).

    CAS  PubMed  Google Scholar 

  28. Elwood, C. N. et al. Understanding urinary conditioning film components on ureteral stents: profiling protein components and evaluating their role in bacterial colonization. Biofouling 29, 1115–1122 (2013).

    CAS  PubMed  Google Scholar 

  29. Shaw, G. L., Choong, S. K. & Fry, C. Encrustation of biomaterials in the urinary tract. Urol. Res. 33, 17–22 (2005).

    PubMed  Google Scholar 

  30. Klis, R., Korczak-Kozakiewicz, E., Denys, A., Sosnowski, M. & Rozanski, W. Relationship between urinary tract infection and self-retaining double-J catheter colonization. J. Endourol. 23, 1015–1019 (2009).

    PubMed  Google Scholar 

  31. Kehinde, E. O. et al. Factors predisposing to urinary tract infection after J ureteral stent insertion. J. Urol. 167, 1334–1337 (2002).

    PubMed  Google Scholar 

  32. Farsi, H. M., Mosli, H. A., Al-Zemaity, M. F., Bahnassy, A. A. & Alvarez, M. Bacteriuria and colonization of double-pigtail ureteral stents: long-term experience with 237 patients. J. Endourol. 9, 469–472 (1995).

    CAS  PubMed  Google Scholar 

  33. Singh, I. et al. Severely encrusted polyurethane ureteral stents: management and analysis of potential risk factors. Urology 58, 526–531 (2001).

    CAS  PubMed  Google Scholar 

  34. Tunney, M. M., Keane, P. F., Jones, D. S. & Gorman, S. P. Comparative assessment of ureteral stent biomaterial encrustation. Biomaterials 17, 1541–1546 (1996).

    CAS  PubMed  Google Scholar 

  35. Gorman, S. P. & Tunney, M. M. Assessment of encrustation behaviour on urinary tract biomaterials. J. Biomater. Appl. 12, 136–166 (1997).

    CAS  PubMed  Google Scholar 

  36. Tunney, M. M., Keane, P. F. & Gorman, S. P. Assessment of urinary tract biomaterial encrustation using a modified Robbins device continuous flow model. J. Biomed. Mater. Res. 38, 87–93 (1997).

    CAS  PubMed  Google Scholar 

  37. Rouprêt, M. et al. Can ureteral stent encrustation analysis predict urinary stone composition? Urology 66, 246–251 (2005).

    PubMed  Google Scholar 

  38. Canales, B. K. et al. Presence of five conditioning film proteins are highly associated with early stent encrustation. J. Endourol. 23, 1437–1442 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Olweny, E. O. et al. Evaluation of the use of a biodegradable ureteral stent after retrograde endopyelotomy in a porcine model. J. Urol. 167, 2198–2202 (2002).

    PubMed  Google Scholar 

  40. Lam, J. S. & Gupta, M. Tips and tricks for the management of retained ureteral stents. J. Endourol. 16, 733–741 (2002).

    PubMed  Google Scholar 

  41. Acosta-Miranda, A. M., Milner, J. & Turk, T. M. The FECal Double-J: a simplified approach in the management of encrusted and retained ureteral stents. J. Endourol. 23, 409–415 (2009).

    PubMed  Google Scholar 

  42. Borboroglu, P. G. & Kane, C. J. Current management of severely encrusted ureteral stents with a large associated stone burden. J. Urol. 164, 648–650 (2000).

    CAS  PubMed  Google Scholar 

  43. Ather, M. H., Talati, J. & Biyabani, R. Physician responsibility for removal of implants: the case for a computerized program for tracking overdue double-J stents. Tech. Urol. 6, 189–192 (2000).

    CAS  PubMed  Google Scholar 

  44. Borin, J. F., Melamud, O. & Clayman, R. V. Initial experience with full-length metal stent to relieve malignant ureteral obstruction. J. Endourol. 20, 300–304 (2006).

    PubMed  Google Scholar 

  45. Kadlec, A. O., Ellimoottil, C. S., Greco, K. A. & Turk, T. M. Five-year experience with metallic stents for chronic ureteral obstruction. J. Urol. 190, 937–941 (2013).

    PubMed  Google Scholar 

  46. Agrawal, S., Brown, C. T., Bellamy, E. A. & Kulkarni, R. The thermo-expandable metallic ureteric stent: an 11-year follow-up. BJU Int. 103, 372–376 (2009).

    PubMed  Google Scholar 

  47. Liatsikos, E. N. et al. Ureteral metal stents: 10-year experience with malignant ureteral obstruction treatment. J. Urol. 182, 2613–2617 (2009).

    PubMed  Google Scholar 

  48. Barbalias, G. A. et al. Metal stents: a new treatment of malignant ureteral obstruction. J. Urol. 158, 54–58 (1997).

    CAS  PubMed  Google Scholar 

  49. Wakui, M., Takeuchi, S., Isioka, J., Iwabuchi, K. & Morimoto, S. Metallic stents for malignant and benign ureteric obstruction. BJU Int. 85, 227–232 (2000).

    CAS  PubMed  Google Scholar 

  50. Hendlin, K., Korman, E. & Monga, M. New metallic ureteral stents: improved tensile strength and resistance to extrinsic compression. J. Endourol. 26, 271–274 (2012).

    PubMed  Google Scholar 

  51. Sountoulides, P., Kaplan, A., Kaufmann, O. G. & Sofikitis, N. Current status of metal stents for managing malignant ureteric obstruction. BJU Int. 105, 1066–1072 (2010).

    PubMed  Google Scholar 

  52. Kukreja, N., Onuma, Y., Daemen, J. & Serruys, P. W. The future of drug-eluting stents. Pharmacol. Res. 57, 171–180 (2008).

    CAS  PubMed  Google Scholar 

  53. Kallidonis, P. S., Georgiopoulos, I. S., Kyriazis, I. D., Al-Aown, A. M. & Liatsikos, E. N. Drug-eluting metallic stents in urology. Indian J. Urol. 30, 8–12 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Krambeck, A. E. et al. A novel drug eluting ureteral stent: a prospective, randomized, multicenter clinical trial to evaluate the safety and effectiveness of a ketorolac loaded ureteral stent. J. Urol. 183, 1037–1042 (2010).

    PubMed  Google Scholar 

  55. Mendez-Probst, C. E. et al. The use of triclosan eluting stents effectively reduces ureteral stent symptoms: a prospective randomized trial. BJU Int. 110, 749–754 (2012).

    CAS  PubMed  Google Scholar 

  56. Kotsar, A. et al. Preclinical evaluation of new indomethacin-eluting biodegradable urethral stent. J. Endourol. 26, 387–392 (2012).

    PubMed  Google Scholar 

  57. Liatsikos, E. N. et al. Application of paclitaxel-eluting metal mesh stents within the pig ureter: an experimental study. Eur. Urol. 51, 217–223 (2007).

    CAS  PubMed  Google Scholar 

  58. Kallidonis, P. et al. Evaluation of zotarolimus-eluting metal stent in animal ureters. J. Endourol. 25, 1661–1667 (2011).

    PubMed  Google Scholar 

  59. Al-Aown, A. et al. Ureteral stents: new ideas, new designs. Ther. Adv. Urol. 2, 85–92 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Venkatesan, N., Shroff, S., Jayachandran, K. & Doble, M. Polymers as ureteral stents. J. Endourol. 24, 191–198 (2010).

    PubMed  Google Scholar 

  61. Chew, B. H. et al. Next generation biodegradable ureteral stent in a yucatan pig model. J. Urol. 183, 765–771 (2010).

    PubMed  Google Scholar 

  62. Lingeman, J. E., Schulsinger, D. A. & Kuo, R. L. Phase I trial of a temporary ureteral drainage stent. J. Endourol. 17, 169–171 (2003).

    PubMed  Google Scholar 

  63. Schlick, R. W. & Planz, K. Potentially useful materials for biodegradable ureteric stents. Br. J. Urol. 80, 908–910 (1997).

    CAS  PubMed  Google Scholar 

  64. Schlick, R. W. & Planz, K. In vitro results with special plastics for biodegradable endoureteral stents. J. Endourol. 12, 451–455 (1998).

    CAS  PubMed  Google Scholar 

  65. Lumiaho, J. et al. New bioabsorbable polylactide ureteral stent in the treatment of ureteral lesions: an experimental study. J. Endourol. 13, 107–112 (1999).

    CAS  PubMed  Google Scholar 

  66. Lumiaho, J. et al. Drainage and antireflux characteristics of a biodegradable self-reinforced, self-expanding X-ray-positive poly-L,D-lactide spiral partial ureteral stent: an experimental study. J. Endourol. 21, 1559–1564 (2007).

    PubMed  Google Scholar 

  67. Lumiaho, J. et al. The morphological, in situ effects of a self-reinforced bioabsorbable polylactide (SR-PLA 96) ureteric stent; an experimental study. J. Urol. 164, 1360–1363 (2000).

    CAS  PubMed  Google Scholar 

  68. Li, G. et al. Introduction to biodegradable polylactic acid ureteral stent application for treatment of ureteral war injury. BJU Int. 108, 901–906 (2011).

    PubMed  Google Scholar 

  69. Talja, M., Multanen, M., Välimaa, T. & Törmälä, P. Bioabsorbable SR-PLGA horn stent after antegrade endopyelotomy: a case report. J. Endourol. 16, 299–302 (2002).

    PubMed  Google Scholar 

  70. Lumiaho, J., Heino, A., Aaltomaa, S., Välimaa, T. & Talja, M. A short biodegradable helical spiral ureteric stent provides better antireflux and drainage properties than a double-J stent. Scand. J. Urol. Nephrol. 45, 129–133 (2011).

    PubMed  Google Scholar 

  71. Lingeman, J. E. et al. Use of a temporary ureteral drainage stent after uncomplicated ureteroscopy: results from a phase II clinical trial. J. Urol. 169, 1682–1688 (2003).

    PubMed  Google Scholar 

  72. Hadaschik, B. A. et al. Investigation of a novel degradable ureteral stent in a porcine model. J. Urol. 180, 1161–1166 (2008).

    PubMed  Google Scholar 

  73. Liatsikos, E. et al. Ureteral obstruction: is the full metallic double-pigtail stent the way to go? Eur. Urol. 57, 480–486 (2010).

    PubMed  Google Scholar 

  74. Tsuji, T. et al. Biodegradable stents as a platform to drug loading. Int. J. Cardiovasc. Intervent. 5, 13–16 (2003).

    PubMed  Google Scholar 

  75. Kotsar, A. et al. Biodegradable braided poly(lactic-co-glycolic acid) urethral stent combined with dutasteride in the treatment of acute urinary retention due to benign prostatic enlargement: a pilot study. BJU Int. 103, 626–629 (2009).

    PubMed  Google Scholar 

  76. Amiel, G. E., Yoo, J. J., Kim, B. S. & Atala, A. Tissue engineered stents created from chondrocytes. J. Urol. 165, 2091–2095 (2001).

    CAS  PubMed  Google Scholar 

  77. Nakayama, Y., Zhou, Y. M. & Ishibashi-Ueda, H. Development of in vivo tissue-engineered autologous tissue-covered stents (biocovered stents). J. Artif. Organs 10, 171–176 (2007).

    PubMed  Google Scholar 

  78. Erbel, R. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369, 1869–1875 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and provided substantial contributions to discussions of its content. D.L., S.B. and N.H. wrote the article. D.L. and B.H.C. undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Dirk Lange.

Ethics declarations

Competing interests

D.L. and B.H.C. declare consulting associations with Bard Medical, Boston Scientific, Cook Medical, Olympus and PercSys. S.B. and N.H. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, D., Bidnur, S., Hoag, N. et al. Ureteral stent-associated complications—where we are and where we are going. Nat Rev Urol 12, 17–25 (2015). https://doi.org/10.1038/nrurol.2014.340

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing