Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation

Abstract

Bacterial small noncoding RNAs (sRNAs) generally recognize target mRNAs in the 5′ region to prevent 30S ribosomes from initiating translation. It was thought that the mRNA coding sequence (CDS) was refractory to sRNA-mediated repression, because elongating 70S ribosomes have an efficient RNA helicase activity that prevents stable target pairing. We report that the Hfq-associated MicC sRNA silences Salmonella typhimurium ompD mRNA via a ≤12-bp RNA duplex within the CDS (codons 23–26) that is essential and sufficient for repression. MicC does not inhibit translational initiation at this downstream position but instead acts by accelerating RNase E–dependent ompD mRNA decay. We propose an alternative gene-silencing pathway within bacterial CDS wherein sRNAs repress targets by endonucleolytic mRNA destabilization rather than by the prototypical inhibition of translational initiation. The discovery of CDS targeting markedly expands the sequence space for sRNA target predictions in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicC sRNA and its expression in Salmonella.
Figure 2: MicC sRNA targets both the ompC and the ompD mRNAs of Salmonella.
Figure 3: Analysis of the MicC-ompD RNA interaction in vitro and in vivo.
Figure 4: Validation of the MicC-ompD interaction in vivo.
Figure 5: MicC binding does not interfere with ompD mRNA translation in vitro.
Figure 6: RNase E is essential for ompD repression by MicC.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Waters, L.S. & Storz, G. Regulatory RNAs in bacteria. Cell 136, 615–628 (2009).

    Article  CAS  Google Scholar 

  2. Vogel, J. A rough guide to the noncoding RNA world of Salmonella. Mol. Microbiol. 71, 1–11 (2009).

    Article  CAS  Google Scholar 

  3. Vogel, J. & Wagner, E.G. Target identification of regulatory sRNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270 (2007).

    Article  CAS  Google Scholar 

  4. Gottesman, S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303–328 (2004).

    Article  CAS  Google Scholar 

  5. Zhang, A., Wassarman, K.M., Ortega, J., Steven, A.C. & Storz, G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9, 11–22 (2002).

    Article  Google Scholar 

  6. Møller, T. et al. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 9, 23–30 (2002).

    Article  Google Scholar 

  7. Sledjeski, D.D., Whitman, C. & Zhang, A. Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol. 183, 1997–2005 (2001).

    Article  CAS  Google Scholar 

  8. Aiba, H. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol. 10, 134–139 (2007).

    Article  CAS  Google Scholar 

  9. Massé, E., Escorcia, F.E. & Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374–2383 (2003).

    Article  Google Scholar 

  10. Folichon, M. et al. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31, 7302–7310 (2003).

    Article  CAS  Google Scholar 

  11. Moll, I., Afonyushkin, T., Vytvytska, O., Kaberdin, V.R. & Blasi, U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9, 1308–1314 (2003).

    Article  CAS  Google Scholar 

  12. Mizuno, T., Chou, M.Y. & Inouye, M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl. Acad. Sci. USA 81, 1966–1970 (1984).

    Article  CAS  Google Scholar 

  13. Bouvier, M., Sharma, C.M., Mika, F., Nierhaus, K.H. & Vogel, J. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol. Cell 32, 827–837 (2008).

    Article  CAS  Google Scholar 

  14. Chen, S., Zhang, A., Blyn, L.B. & Storz, G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J. Bacteriol. 186, 6689–6697 (2004).

    Article  CAS  Google Scholar 

  15. Udekwu, K.I. et al. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19, 2355–2366 (2005).

    Article  CAS  Google Scholar 

  16. Argaman, L. & Altuvia, S. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol. 300, 1101–1112 (2000).

    Article  CAS  Google Scholar 

  17. Huntzinger, E. et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 24, 824–835 (2005).

    Article  CAS  Google Scholar 

  18. Maki, K., Uno, K., Morita, T. & Aiba, H. RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proc. Natl. Acad. Sci. USA 105, 10332–10337 (2008).

    Article  CAS  Google Scholar 

  19. Møller, T., Franch, T., Udesen, C., Gerdes, K. & Valentin-Hansen, P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16, 1696–1706 (2002).

    Article  Google Scholar 

  20. Morita, T., Mochizuki, Y. & Aiba, H. Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc. Natl. Acad. Sci. USA 103, 4858–4863 (2006).

    Article  CAS  Google Scholar 

  21. Afonyushkin, T., Vecerek, B., Moll, I., Bläsi, U. & Kaberdin, V.R. Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res. 33, 1678–1689 (2005).

    Article  CAS  Google Scholar 

  22. Vogel, J., Argaman, L., Wagner, E.G. & Altuvia, S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271–2276 (2004).

    Article  CAS  Google Scholar 

  23. Kushner, S.R. mRNA decay in prokaryotes and eukaryotes: different approaches to a similar problem. IUBMB Life 56, 585–594 (2004).

    Article  CAS  Google Scholar 

  24. Carpousis, A.J. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61, 71–87 (2007).

    Article  CAS  Google Scholar 

  25. Morita, T., Maki, K. & Aiba, H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19, 2176–2186 (2005).

    Article  CAS  Google Scholar 

  26. Guillier, M. & Gottesman, S. The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res. 36, 6781–6794 (2008).

    Article  CAS  Google Scholar 

  27. Darfeuille, F., Unoson, C., Vogel, J. & Wagner, E.G. An antisense RNA inhibits translation by competing with standby ribosomes. Mol. Cell 26, 381–392 (2007).

    Article  CAS  Google Scholar 

  28. Veèerek, B., Moll, I. & Blasi, U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26, 965–975 (2007).

    Article  Google Scholar 

  29. Sharma, C.M., Darfeuille, F., Plantinga, T.H. & Vogel, J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007).

    Article  CAS  Google Scholar 

  30. Takyar, S., Hickerson, R.P. & Noller, H.F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  Google Scholar 

  31. Papenfort, K. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62, 1674–1688 (2006).

    Article  CAS  Google Scholar 

  32. Tjaden, B. et al. Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res. 34, 2791–2802 (2006).

    Article  CAS  Google Scholar 

  33. Massé, E., Vanderpool, C.K. & Gottesman, S. Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187, 6962–6971 (2005).

    Article  Google Scholar 

  34. Rasmussen, A.A. et al. A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol. Microbiol. 72, 566–577 (2009).

    Article  CAS  Google Scholar 

  35. Zhang, A. et al. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50, 1111–1124 (2003).

    Article  CAS  Google Scholar 

  36. Sittka, A., Pfeiffer, V., Tedin, K. & Vogel, J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63, 193–217 (2007).

    Article  CAS  Google Scholar 

  37. Urban, J.H. & Vogel, J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 35, 1018–1037 (2007).

    Article  CAS  Google Scholar 

  38. Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).

    Article  CAS  Google Scholar 

  39. Urban, J.H. & Vogel, J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 6, e64 (2008).

    Article  Google Scholar 

  40. Khemici, V. & Carpousis, A.J. The RNA degradosome and poly(A) polymerase of Escherichia coli are required in vivo for the degradation of small mRNA decay intermediates containing REP-stabilizers. Mol. Microbiol. 51, 777–790 (2004).

    Article  CAS  Google Scholar 

  41. Viegas, S.C. et al. Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res. 35, 7651–7664 (2007).

    Article  CAS  Google Scholar 

  42. Pfeiffer, V. et al. A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol. Microbiol. 66, 1174–1191 (2007).

    Article  CAS  Google Scholar 

  43. McDowall, K.J., Hernandez, R.G., Lin-Chao, S. & Cohen, S.N. The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J. Bacteriol. 175, 4245–4249 (1993).

    Article  CAS  Google Scholar 

  44. Babitzke, P. & Kushner, S.R. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 88, 1–5 (1991).

    Article  CAS  Google Scholar 

  45. Papenfort, K. et al. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol. Microbiol. 68, 890–906 (2008).

    Article  CAS  Google Scholar 

  46. Brodersen, P. & Voinnet, O. Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell Biol. 10, 141–148 (2009).

    Article  CAS  Google Scholar 

  47. Heidrich, N., Moll, I. & Brantl, S. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res. 35, 4331–4346 (2007).

    Article  CAS  Google Scholar 

  48. Mackie, G.A. Ribonuclease E is a 5′-end-dependent endonuclease. Nature 395, 720–723 (1998).

    Article  CAS  Google Scholar 

  49. Emory, S.A., Bouvet, P. & Belasco, J.G. A 5′-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 6, 135–148 (1992).

    Article  CAS  Google Scholar 

  50. Bouvet, P. & Belasco, J.G. Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360, 488–491 (1992).

    Article  CAS  Google Scholar 

  51. Baker, K.E. & Mackie, G.A. Ectopic RNase E sites promote bypass of 5′-end-dependent mRNA decay in Escherichia coli. Mol. Microbiol. 47, 75–88 (2003).

    Article  CAS  Google Scholar 

  52. Joyce, S.A. & Dreyfus, M. In the absence of translation, RNase E can bypass 5′ mRNA stabilizers in Escherichia coli. J. Mol. Biol. 282, 241–254 (1998).

    Article  CAS  Google Scholar 

  53. Callaghan, A.J. et al. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  54. Vytvytska, O., Moll, I., Kaberdin, V.R., von Gabain, A. & Bläsi, U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 14, 1109–1118 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iost, I. & Dreyfus, M. The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J. 14, 3252–3261 (1995).

    Article  CAS  Google Scholar 

  56. Dreyfus, M. Killer and protective ribosomes. Prog. Mol. Biol. Transl. Sci. 85, 423–466 (2009).

    Article  CAS  Google Scholar 

  57. Sittka, A. et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4, e1000163 (2008).

    Article  Google Scholar 

  58. Worrall, J.A. et al. Reconstitution and analysis of the multienzyme Escherichia coli RNA degradosome. J. Mol. Biol. 382, 870–883 (2008).

    Article  CAS  Google Scholar 

  59. Hüttenhofer, A. & Noller, H.F. Footprinting mRNA-ribosome complexes with chemical probes. EMBO J. 13, 3892–3901 (1994).

    Article  Google Scholar 

  60. Argaman, L. et al. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11, 941–950 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.A. Mackie and B. Luisi for insightful comments on the manuscript and E. Bär for technical assistance. We are grateful for materials from S. Kushner (University of Georgia, E. coli strains), R. Misra (Arizona State University, porin antiserum) and K. Nierhaus (Max Planck Institute for Molecular Genetics, Berlin, 30S ribosomes). This work was supported by a Boehringer Ingelheim Fonds stipend to K.P., by the Biotechnology and Biological Sciences Research Council Core Strategic Grant to J.C.D.H. and by funds of the Deutsche Forschungsgemeinschaft Priority Program SPP1258 Sensory and Regulatory RNAs in Prokaryotes to J.V.

Author information

Authors and Affiliations

Authors

Contributions

V.P. and J.V. designed the research; V.P. performed all but the transcriptomic experiments; K.P. and S.L. conducted and analyzed the transcriptomic experiments; J.V. and J.C.D.H. wrote the manuscript, which all authors commented on; J.V. supervised the project.

Corresponding author

Correspondence to Jörg Vogel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Methods (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, V., Papenfort, K., Lucchini, S. et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16, 840–846 (2009). https://doi.org/10.1038/nsmb.1631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing