Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells

Abstract

Human chromosomal fragile sites are regions of the genome that are prone to DNA breakage, and are classified as common or rare, depending on their frequency in the population. Common fragile sites frequently coincide with the location of genes involved in carcinogenic chromosomal translocations, suggesting their role in cancer formation. However, there has been no direct evidence linking breakage at fragile sites to the formation of a cancer-specific translocation. Here, we studied the involvement of fragile sites in the formation of RET/PTC rearrangements, which are frequently found in papillary thyroid carcinoma (PTC). These rearrangements are commonly associated with radiation exposure; however, most of the tumors found in adults are not linked to radiation. In this study, we provide structural and biochemical evidence that the RET, CCDC6 and NCOA4 genes participating in two major types of RET/PTC rearrangements, are located in common fragile sites FRA10C and FRA10G, and undergo DNA breakage after exposure to fragile site-inducing chemicals. Moreover, exposure of human thyroid cells to these chemicals results in the formation of cancer-specific RET/PTC rearrangements. These results provide the direct evidence for the involvement of chromosomal fragile sites in the generation of cancer-specific rearrangements in human cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arlt MF, Durkin SG, Ragland RL, Glover TW . (2006). Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 5: 1126–1135.

    Article  CAS  Google Scholar 

  • Boldog F, Gemmill RM, West J, Robinson M, Robinson L, Li E et al. (1997). Chromosome 3p14 homozygous deletions and sequence analysis of FRA3B. Hum Mol Genet 6: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Bongarzone I, Butti MG, Fugazzola L, Pacini F, Pinchera A, Vorontsova TV et al. (1997). Comparison of the breakpoint regions of ELE1 and RET genes involved in the generation of RET/PTC3 oncogene in sporadic and in radiation-associated papillary thyroid carcinomas. Genomics 42: 252–259.

    Article  CAS  PubMed  Google Scholar 

  • Burrow AA, Williams LE, Pierce LC, Wang YH . (2009). Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics 10: 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casper AM, Durkin SG, Arlt MF, Glover TW . (2004). Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 75: 654–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW . (2002). ATR regulates fragile site stability. Cell 111: 779–789.

    Article  CAS  Google Scholar 

  • Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE . (2005). Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab 90: 2364–2369.

    Article  CAS  PubMed  Google Scholar 

  • Ciampi R, Zhu Z, Nikiforov YE . (2005). BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 16: 99–105.

    Article  CAS  Google Scholar 

  • Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M . (1998). A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2: 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Corbin S, Neilly ME, Espinosa III R, Davis EM, McKeithan TW, Le Beau MM . (2002). Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res 62: 3477–3484.

    CAS  PubMed  Google Scholar 

  • Durkin SG, Glover TW . (2007). Chromosome fragile sites. Annu Rev Genet 41: 169–192.

    Article  CAS  PubMed  Google Scholar 

  • Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW . (2008). Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci USA 105: 246–251.

    Article  CAS  PubMed  Google Scholar 

  • Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM . (2000). The RET/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85: 1170–1175.

    CAS  PubMed  Google Scholar 

  • Fugazzola L, Pilotti S, Pinchera A, Vorontsova TV, Mondellini P, Bongarzone I et al. (1995). Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res 55: 5617–5620.

    CAS  PubMed  Google Scholar 

  • Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT . (1995). Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81: 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini P, Sozzi G, Pierotti MA . (2007). The role of chromosomal alterations in human cancer development. J Cell Biochem 102: 320–331.

    Article  CAS  PubMed  Google Scholar 

  • Glover TW . (2006). Common fragile sites. Cancer Lett 232: 4–12.

    Article  CAS  PubMed  Google Scholar 

  • Glover TW, Stein CK . (1987). Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41: 882–890.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glover TW, Stein CK . (1988). Chromosome breakage and recombination at fragile sites. Am J Hum Genet 43: 265–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handt O, Baker E, Dayan S, Gartler SM, Woollatt E, Richards RI et al. (2000). Analysis of replication timing at the FRA10B and FRA16B fragile site loci. Chromosome Res 8: 677–688.

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Canfield TK, Fjeld AD, Mumm S, Laird CD, Gartler SM . (1997). A variable domain of delayed replication in FRAXA fragile X chromosomes: X inactivation-like spread of late replication. Proc Natl Acad Sci USA 94: 4587–4592.

    Article  CAS  PubMed  Google Scholar 

  • Hellman A, Rahat A, Scherer SW, Darvasi A, Tsui LC, Kerem B . (2000). Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol 20: 4420–4427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI et al. (2002). A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1: 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Hewett DR, Handt O, Hobson L, Mangelsdorf M, Eyre HJ, Baker E et al. (1998). FRA10B structure reveals common elements in repeat expansion and chromosomal fragile site genesis. Mol Cell 1: 773–781.

    Article  CAS  PubMed  Google Scholar 

  • Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM . (2001). RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics 73: 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Maizels N . (2001). Breaksite batch mapping, a rapid method for assay and identification of DNA breaksites in mammalian cells. Nucleic Acids Res 29: E33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwano A, Kajii T . (1987). Synergistic effect of aphidicolin and ethanol on the induction of common fragile sites. Hum Genet 75: 75–78.

    CAS  PubMed  Google Scholar 

  • Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y et al. (1998). Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci USA 95: 8141–8146.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mertens F . (2008). Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  • Motomura T, Nikiforov YE, Namba H, Ashizawa K, Nagataki S, Yamashita S et al. (1998). RET rearrangements in Japanese pediatric and adult papillary thyroid cancers. Thyroid 8: 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Murano I, Kuwano A, Kajii T . (1989). Fibroblast-specific common fragile sites induced by aphidicolin. Hum Genet 83: 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Musio A, Sbrana I . (1997). Aphidicolin-sensitive specific common fragile sites: a biomarker of exposure to pesticides. Environ Mol Mutagen 29: 250–255.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE . (2008). Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21 (Suppl 2): S37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforov YE, Koshoffer A, Nikiforova M, Stringer J, Fagin JA . (1999). Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene 18: 6330–6334.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA . (1997). Distinct pattern of RET oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57: 1690–1694.

    CAS  PubMed  Google Scholar 

  • Nikiforova MN, Nikiforov YE . (2008). Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8: 83–95.

    Article  CAS  PubMed  Google Scholar 

  • Palakodeti A, Han Y, Jiang Y, Le Beau MM . (2004). The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosomes Cancer 39: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Pelliccia F, Bosco N, Curatolo A, Rocchi A . (2008). Replication timing of two human common fragile sites: FRA1H and FRA2G. Cytogenet Genome Res 121: 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Popescu NC . (2003). Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett 192: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Samadashwily GM, Raca G, Mirkin SM . (1997). Trinucleotide repeats affect DNA replication in vivo. Nat Genet 17: 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Santoro M, Melillo RM, Fusco A . (2006). RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 155: 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA . (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Smanik PA, Furminger TL, Mazzaferri EL, Jhiang SM . (1995). Breakpoint characterization of the RET/PTC oncogene in human papillary thyroid carcinoma. Hum Mol Genet 4: 2313–2318.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland GR . (1991). Chromosomal fragile sites. Genet Anal Tech Appl 8: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland GR, Parslow MI, Baker E . (1985). New classes of common fragile sites induced by 5-azacytidine and bromodeoxyuridine. Hum Genet 69: 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Usdin K, Woodford KJ . (1995). CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 23: 4202–4209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Darling J, Zhang JS, Huang H, Liu W, Smith DI . (1999). Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum Mol Genet 8: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Weterings E, Chen DJ . (2008). The endless tale of non-homologous end-joining. Cell Res 18: 114–124.

    Article  CAS  PubMed  Google Scholar 

  • Yunis JJ, Soreng AL . (1984). Constitutive fragile sites and cancer. Science 226: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Freudenreich CH . (2007). An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S.cervisiae. Mol Cell 27: 367–379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R et al. (2003). Molecular basis for expression of common and rare fragile sites. Mol Cell Biol 23: 7143–7151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (CA113863 to Y-H Wang and YE Nikiforov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-H Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, M., Dillon, L., Pramanik, S. et al. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene 29, 2272–2280 (2010). https://doi.org/10.1038/onc.2009.502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.502

Keywords

This article is cited by

Search

Quick links