Skip to main content
Log in

The kinetic model of Al oxidation in heterogeneous aluminum-water plasma. Negative ions

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

We investigate the mechanisms of formation and death of negative ions in aluminum-water plasma, their role in kinetics of its ionization and recombination, and influence on plasma parameters. Negative ions, in contrast to the positive, do not in fact participate in the heterogeneous processes and require, to enhance their influence on the plasma parameters, first, high electron temperatures (~1.5 eV and higher) and, second, low n e and [Al] concentrations: in this way, they make a great contribution to the H2O dissociation at the expense of the electron energy (2–8 electrons per a molecule). We show that, even in the most favorable conditions at low H and O concentrations within the experimental temperature range, T e = 0.6–1 eV, the negative ions do not, in fact, influence the Al concentration and, in the operation reactor zone, the other parameters, except for the microparticle concentration. We reveal the source, important for the spectral diagnostics of the atomic emission, of recombination populating of the excited Al levels. The main negative ion (OH) is established. We have concluded the impossibility of its use in order to optimize the operation of the aluminum-water plasma-chemical reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., in Nonequilibrium Processesin Plasma, Combustion and Atmosphere, Moscow: Torus, 2012, p. 81.

    Google Scholar 

  2. Bityurin, V.A., Efimov, A.V., Klimov, A.I., Korshunov, O.V., Kutuzov, D.S., and Chinnov, V.F., High Temp., 2014, vol. 52, no. 1, pp. 1.

    Article  Google Scholar 

  3. Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2014, vol. 52, no. 5, pp. 621.

    Article  Google Scholar 

  4. Bityurin, V.A., Klimov, A.I., Korshunov, O.V., and Chinnov, V.F., High Temp., 2015, vol. 53, no. 1, pp. 21.

    Article  Google Scholar 

  5. Washburn, E.B., Trivedi, J.N., Catoire, L., and Beckstead, M.W., Combust. Sci. Technol., 2008, vol. 180, pp. 1502.

    Article  Google Scholar 

  6. Starik, A.M., Titova, N.S., and Sharipov, A.S., in Neravnovesnye fiziko-khimicheskie protsessy v gazovykh potokakh i novye printsipy organizatsii goreniya (Nonequilibrium Physical and Chemical Processes in Gas Flows and New Principles of Organization of Combustion), Starik, A.M., Ed., Moscow: Torus, 2011, p. 131.

  7. McClean, R.E., Nelson, H.H., and Cambell, M.L., J. Phys. Chem., 1993, vol. 97, pp. 9673.

    Article  Google Scholar 

  8. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

    Google Scholar 

  9. Batenin, V.M., Korshunov, O.V., and Chinnov, V.F., Teplofiz. Vys. Temp., 1986, vol. 24, no. 1, pp. 9.

    ADS  Google Scholar 

  10. Buchel’nikova, I.S., Zh. Eksp. Tekh. Fiz., 1959, vol. 35, pp. 1119.

    Google Scholar 

  11. Melton, C.E., J. Chem. Phys., 1972, vol. 57, pp. 4218.

    Article  ADS  Google Scholar 

  12. Haxton, D.J., McCurdy, C.W., and Rescigno, T.N., Phys. Rev. A: At., Mol., Opt. Phys., 2007, vol. 75, 012710.

    Article  Google Scholar 

  13. Rawat, P., Prabhudesai, V.S., Aravind, G., Rahman, M.A., and Krishnakumar, E., J. Phys. B: At., Mol. Opt. Phys., 2007, vol. 40, pp. 4625.

    Article  ADS  Google Scholar 

  14. Batenin, V.M., Korshunov, O.V., and Chinnov, V.F., Preprint of the Inst. for High Temperatures, Russ. Acad. Sci., Moscow, 1985, no. 6-172.

    Google Scholar 

  15. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook of Atomic and Molecular Physics), Moscow: Atomizdat, 1980.

    Google Scholar 

  16. McEwan, M.J. and Fillips, L.F., Chemistry of the Atmosphere, New York: Wiley, 1975.

    Google Scholar 

  17. Virin, L.I., Dzhagaspanyan, P.B., Karachentsev, G.V., Potapov, V.K., and Tal’roze, V.L., in Ionno-molekulyarnye reaktsii v gazakh (Ion-Molecular Reactions in Gases), Moscow: Nauka, 1979, p. 548.

    Google Scholar 

  18. Stockdale, J.A.D., Compton, R.N., and Reinhardt, P.W., Phys. Rev. Lett., 1968, vol. 21, no. 10, pp. 664.

    Article  ADS  Google Scholar 

  19. Smirnov, B.M., Otritsatel’nye iony (Negatively Charged Ions), Moscow: Atomizdat, 1978.

    Google Scholar 

  20. Tisone, G.C. and Branscombe, L.M., Phys. Rev., 1968, vol. 170, pp. 169.

    Article  ADS  Google Scholar 

  21. Rusanov, V.D., Fridman, A.L., and Sholin, G.V., Phys.—Usp., 1981, vol. 24, no. 6, pp. 447.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korshunov.

Additional information

Original Russian Text © O.V. Korshunov, V.F. Chinnov, D.I. Kavyrshin, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 2, pp. 189–196.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, O.V., Chinnov, V.F. & Kavyrshin, D.I. The kinetic model of Al oxidation in heterogeneous aluminum-water plasma. Negative ions. High Temp 55, 183–190 (2017). https://doi.org/10.1134/S0018151X17020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17020067

Navigation