Skip to main content
Log in

A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties

  • Colloid Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Aqueous electrolyte solutions play an important role in many electrophysical and chemical processes in aerospace technology and industrial applications. As noncovalent interactions, the interactions between ions are crucially important for biomolecular structures as well (protein structure folding, molecular level processes followed by ionic pair correlations, the formation of flexible hydrate shells, and so on). Specifically, ions (cations and anions with the same valence charges) can form stable pairs if their sizes match. The formation of ionic pairs can substantially affect the thermodynamic stabilities of proteins in the alkali salts physiologically present in the human body. Research aims and problems impose severe demands on readjustments of the ionic force fields and potential parameters developed to describe aqueous solutions and electrolytic systems. Ionic solutions and their interaction with biomolecules have been observed for over 100 years [1], but the behavior of such solutions remains poorly studied today. New data obtained in this work deals with parameterization strategies and adjustments for the ionic force fields of the alkali cations and halide anions that should be helpful in biomolecular research. Using molecular dynamics (MD) models, four electrolytic systems (HCl-H2O, LiCl-H2O, NaCl-H2O, and KCl-H2O) are investigated as binary mixtures of water and cations and anions, respectively. The intermolecular interaction parameters are varied for two of the four model electrolytes (HCl-H2O and NaCl-H2O) to simulate the possibility of different ionic shells forming during interaction with water. It is found that varying the potential parameters strongly affects the dynamic and structural characteristics of electrolyte systems. MD simulations are performed in the temperature range of 300 to 600 K with a step of 50 K. MD simulations for all electrolyte models (HCl-H2O, LiCl-H2O, NaCl-H2O, KCl-H2O) are also conducted for different molar fractions of electrolyte concentration: 16, 8, and 1 mol/kg. Energies of diffusion activation are calculated using the Arrhenius equation, thereby constructing temperature dependence graphs of diffusion coefficients for all four electrolyte systems. The observed diffusion properties of the electrolyte systems are found to correlate well with the energy and structural radial distribution data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Collins, Proc. Natl. Acad. Sci. USA 92, 5553 (1995).

    Article  CAS  Google Scholar 

  2. R. L. Baldwin, Biophys J. 71, 2056 (1996).

    Article  CAS  Google Scholar 

  3. M. G. Cacace, E. M. Landau, and J. J. Ramsden, Q. Rev. Biophys. 30, 241 (1997).

    Article  CAS  Google Scholar 

  4. W. Kunz, P. Lo Nostro, and B. W. Ninham, J. Colloid Interface Sci. 9, 1 (2004).

    Article  CAS  Google Scholar 

  5. Y. J. Zhang and P. S. Cremer, Chem. Biol. 10, 658 (2006).

    CAS  Google Scholar 

  6. P. Qian and Zh. Zh. Yang, Sci. China, Ser. B: Chem. 50, 190 (2012).

    Article  Google Scholar 

  7. B. Hess and N. F. A. van der Vegt, Proc. Natl. Acad. Sci. 106, 13296 (2009).

    Article  CAS  Google Scholar 

  8. I. S. Joung, T. Luchko, and D. A. Case, J. Chem. Phys 138, 044103 (2013).

    Article  Google Scholar 

  9. D. Horinek, A. Herz, L. Vrbka, et al., Chem. Phys. Lett. 479, 173 (2009).

    Article  CAS  Google Scholar 

  10. C. D. Wick and L. X. Danga, J. Chem. Phys. 125, 024706 (2006).

    Article  Google Scholar 

  11. E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007).

    Article  CAS  Google Scholar 

  12. I. V. Khavrutskii, J. Dzubiell, and J. A. McCammon, J. Chem. Phys. 128, 044106 (2008).

    Article  Google Scholar 

  13. O. T. Cummings and C. D. Wick, J. Chem. Phys. 139, 064708 (2013).

    Article  Google Scholar 

  14. F. Mou ka, I. Nezbeda, and W. R. Smith, J. Chem. Phys. 139, 124505 (2013).

    Article  Google Scholar 

  15. T. E. Cheatham III and M. A. Young, Biopolymers 56, 232 (2000–2001).

    Article  CAS  Google Scholar 

  16. S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee, J. Phys. Chem. B 102, 4193 (1998).

    Article  CAS  Google Scholar 

  17. J. C. Rasaiah and R. M. Lynden-Bell, Phil. Trans. R. Soc. London A 359, 1545 (2001).

    Article  CAS  Google Scholar 

  18. K. Yui, M. Sakuma, and T. Funazukuri, Fluid Phase Equilib. 297, 227 (2010).

    Article  CAS  Google Scholar 

  19. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  20. G. W. Robinson, S. Singh, S.-B. Zhu, and M. W. Evans, World Sci. Ser. Contemp. Chem. Phys. 9, 528 (1996).

    Google Scholar 

  21. P. G. Kusalik and I. M. Svishchev, Science 265, 1219 (1994).

    Article  CAS  Google Scholar 

  22. C. W. Yong, STFCs Comput. Sci. Eng. Departm. (CSED), 38 (2010).

    Google Scholar 

  23. T. R. Forester and W. Smith, J. Mol. Graphics 14(3), 136 (1996).

    Article  Google Scholar 

  24. B. R. Brooks, C. L. Brooks, A. D. Mackerell, Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, J. Comput. Chem. 30, 1545 (2009).

    Article  CAS  Google Scholar 

  25. M. Horsch, S. Becker, J. M. Castillo, S. Deublein, A. Froscher, S. Reiser, S. Werth, J. Vrabec, and H. Hasse, arxiv:1305.4048v1.

  26. L. Xin, G. L. Dong, and Y. Z. Zhi, Sci. China Ser. B: Chem. 51, 1221 (2008).

    Article  Google Scholar 

  27. C. Caleroa, J. Faraudoa, and M. Aguilella-Arzob, Mol. Simul. 37, 123 (2011).

    Article  Google Scholar 

  28. T. Ikeda, M. Boero, and K. Terakura, J. Chem. Phys. 126, 034501 (2007).

    Article  Google Scholar 

  29. W. Li, C. Chen, and J. Yang, Heat Tran. Asian Res. 37, 86 (2008).

    Article  Google Scholar 

  30. J. C. Warner, Ann. Acad. Sci. N.Y. 39, 345 (1939).

    Article  Google Scholar 

  31. L. T. Vlaev, S. D. Genieva, and M. P. Tavlieva, J. Struct. Chem. 44, 995 (2003).

    Article  CAS  Google Scholar 

  32. H. F. Shurvell, J. Chem. Educat. 43, 555 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Khalansky.

Additional information

Published in Russian in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 12, pp. 2017–2027.

This article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalansky, D., Popova, E., Gladyshev, P. et al. A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties. Russ. J. Phys. Chem. 88, 2225–2235 (2014). https://doi.org/10.1134/S0036024414120139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414120139

Keywords

Navigation