Skip to main content
Log in

Calorimetric investigation of electronic and lattice excitations of the icosahedral quasicrystal in the range of moderate temperatures

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The precise measurements of the specific heat and the linear expansion coefficient of polygrain samples of the ordered icosahedral phase Al63Cu25Fe12 have been performed in the temperature range 1.8–400.0 K. The deviations from the Grüneisen law, according to which the temperature dependences of the lattice specific heat at constant volume and the linear expansion coefficient are identical to each other, have been analyzed. The proofs that the specific heat of the quasicrystals contains latent electronic and lattice contributions of the Schottky type have been obtained. The revealed contributions can be thermodynamic consequences of the fractal energy spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ch. Walti, E. Felder, M. A. Chernikov, H. R. Ott, M. de Boissieu, and C. Janot, Phys. Rev. B: Condens. Matter 57, 10504 (1998).

    ADS  Google Scholar 

  2. M. A. Chernikov, A. Bernasconi, C. Beeli, A. Schilling, and H. R. Ott, Phys. Rev. B: Condens. Matter 48, 3058 (1993).

    ADS  Google Scholar 

  3. J. C. Lasjaunias, Y. Calvayrac, and Hongshum Yang, J. Phys. I 7, 959 (1997).

    Article  Google Scholar 

  4. A. Inaba, H. Takakura, An-Pang Tsai, I. R. Fisher, and P. C. Canfield, Mater. Sci. Eng. 294–296, 723 (2000).

    Google Scholar 

  5. A. F. Prekul, V. A. Kazantsev, N. I. Shchegolikhina, R. I. Gulyaeva, and K. Edagawa, Fiz. Tverd. Tela (St. Petersburg) 50(11), 1933 (2008) [Phys. Solid State 50 (11), 2013 (2008)].

    Google Scholar 

  6. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Fizmatlit, Moscow, 1963), Chap. 6.

    MATH  Google Scholar 

  7. A. F. Prekul and N. I. Shchegolikhina, Kristallografiya 52(6), 1032 (2007) [Crystallogr. Rep. 52 (6), 2013 (2007)].

    Google Scholar 

  8. M. Born and M. Goeppert-Mayer, Handbuch der Physik (Berlin: Springer, 1933 GINTL, Leningrad, 1938), Vol. 24, Part 2 [in German and in Russian].

    Google Scholar 

  9. A. F. Prekul, N. I. Shchegolikhina, and I. V. Shalaeva, Fiz. Met. Metalloved. 106(2), 160 (2008) [Phys. Met. Metallogr. 106 (2), 157 (2008)].

    Google Scholar 

  10. F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940; TTL, Moscow, 1949); R. A. Swalin, Thermodynamics of Solids, 2nd ed. (Wiley, New York, 1972).

    MATH  Google Scholar 

  11. K. Kajiama, K. Edagawa, and T. Suzuki, Philos. Mag. Lett. 80, 49 (2000).

    Article  ADS  Google Scholar 

  12. J. J. Wanderwal, P. Zhao, and D. Walton, Phys. Rev. B: Condens. Matter 46, 501 (1992).

    ADS  Google Scholar 

  13. K. Tanaka, Y. Mitarai, and M. Koiwa, Philos. Mag. A 73, 1715 (1996).

    Article  ADS  Google Scholar 

  14. R. A. Brand, A.-J. Dianoux, and Y. Calvayrac, Phys. Rev. B: Condens. Matter 62, 8849 (2000).

    ADS  Google Scholar 

  15. P. H. Keesom and N. Pearlman, in Low Temperature Physics (Inostrannaya Literatura, Moscow, 1959), p. 315 [in Russian].

    Google Scholar 

  16. R. Escudero, J.C. Lasjaunias, Y. Calvayrac, and M. Boudard, J. Phys.: Condens. Matter 11, 383 (1999).

    Article  ADS  Google Scholar 

  17. X.-P. Tang, E. A. Hill, S. K. Wonnell, S. J. Poon, and Y. Wu, Phys. Rev. Lett. 79, 1070 (1997).

    Article  ADS  Google Scholar 

  18. P. P. Parshin, M. G. Zemlyanov, A. V. Mashkov, R. A. Brand, A.-J. Dianoux, and Y. Calvayrac, Fiz. Tverd. Tela (St. Petersburg) 46(3), 510 (2004) [Phys. Solid State 46 (3), 526 (2004)].

    Google Scholar 

  19. C. Tsallis, L. R. da Silva, R. S. Mendes, R. O. Vallejos, and A. M. Mariz, Phys. Rev. B: Condens. Matter 56, R4922 (1997).

    ADS  Google Scholar 

  20. P. W. Mauriz, M. S. Vasconcelos, and E. L. Albuquerque, Physica A (Amsterdam) 329, 101 (2003).

    ADS  Google Scholar 

  21. P. W. Mauriz, M. S. Vasconcelos, and E. L. Albuquerque, Phys. Rev. B: Condens. Matter 63, 184203 (2001).

    ADS  Google Scholar 

  22. T. Fujiwara, in Physical Properties of Quasicrystals, Ed. by Z. M. Stadnik (Springer, Berlin, 1999), p. 169.

    Google Scholar 

  23. T. Klein, C. Berger, D. Mayou, and F. Cyrot-Lackman, Phys. Rev. Lett. 66, 2907 (1991).

    Article  ADS  Google Scholar 

  24. M. Shimizu, Rep. Prog. Phys. 44, 329 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Prekul.

Additional information

Original Russian Text © A.F. Prekul, E.V. Shalaeva, N.I. Shchegolikhina, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 9, pp. 1675–1680.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prekul, A.F., Shalaeva, E.V. & Shchegolikhina, N.I. Calorimetric investigation of electronic and lattice excitations of the icosahedral quasicrystal in the range of moderate temperatures. Phys. Solid State 52, 1797–1802 (2010). https://doi.org/10.1134/S1063783410090027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410090027

Keywords

Navigation