Skip to main content
Log in

Molecular dynamics studies of the interaction between water and oxide surfaces

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The water-surface interaction is a research target of great importance for a broad spectrum of technological applications and fundamental scientific disciplines. In the present study, a comparative analysis is performed to clarify the structural and diffusion properties of water on a number of oxide surfaces. Based on the molecular dynamics (MD) simulation method, the water-surface interaction mechanism was investigated for the oxide materials TiO2 (anatase), Al2O3 (corundum), and Fe2O3 (hematite). A comparison of the water-TiO2 interaction with the water-Al2O3 and water-Fe2O3 systems demonstrates the specificity of the adsorption and layer formation on the atomic/molecular level scale. The obtained MD analysis data point to a considerable enhancement of water-TiO2 surface adsorption and a relatively high density distribution profile near the surface. The novel data on water structure and diffusion on oxide surfaces are discussed from the point of view of possible material innovation and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Hennch, Rep. Prog. Phys. 48, 1481 (1985); V. E. Hennch, Prog. Surface Sci. 9, 143 (1979).

    Article  ADS  Google Scholar 

  2. U. Diebold, Surface Sci. Rep. 48, 53 (2003).

    Article  ADS  Google Scholar 

  3. A. Fujishima and K. Honda, Nature 238(5358), 37 (1972).

    Article  ADS  Google Scholar 

  4. P. A. Thiel and T. E. Madey, “The Interaction of Water with Solid Surfaces: Fundamental Aspects,” Surface Sci. Rep. 7, 211–385 (1987).

    Article  ADS  Google Scholar 

  5. H. Knounger, “Hydrogen Bonds in Systems of Adsorbed Molecules,” in The Hydrogen Bond, Ed. by P. Schuster, G. Zundel, and C. Sandorfy (North-Holland, Amsterdam, 1976), Vol. 3, chap. 27, pp. 1263–1364.

    Google Scholar 

  6. K. Barton, Protection against Atmospheric Corrosion Theories and Methods (Wiley, London, 1976).

    Google Scholar 

  7. G. Butler and H. C. K. Ison, Corrosion and Its Prevention in Waters (Reinhold, New York, 1966).

    Google Scholar 

  8. S. Sato and J. M. White, Chem. Phys. Lett. 72, 83 (1980).

    Article  ADS  Google Scholar 

  9. C. Leygraf, M. Hendewerk, and G. A. Somorjai, J. Catal. 78, 341 (1982).

    Article  Google Scholar 

  10. J. E. Turner, M. Hendewerk, and G. A. Somorjai, Chem. Phys. Lett. 105, 581 (1984).

    Article  ADS  Google Scholar 

  11. C. Leygraf, M. Hendewerk, and G. A. Somorjai, J. Solid State Chem. 48, 35 (1982).

    Google Scholar 

  12. R. L. Kurtz and V. E. Hennch, Phys. Rev. B: Condens. Matter Mater. Phys. 36, 3414 (1987).

    Article  ADS  Google Scholar 

  13. W. Smith, T. R. Forester, and I. T. Todorov, The DL-POLY User Manual v. 2.20 (2009).

  14. R. S. Kavathekar, P. Dev, N. J. English, and J. M. D. MacElroy, “Molecular Dynamics Study of Water in Contact with the TiO2 Rutile-110, 100, 101, 001 and Anatase-101, 001 Surface,” Mol. Phys. 109, 1649–1656 (2011).

    Article  ADS  Google Scholar 

  15. B. Guillot and N. Sator, “A Computer Simulation Study of Natural Silicate Melts. Part I: Low Pressure Properties,” Geochim. Cosmochim. Acta 71, 1249–1265 (2007).

    Article  ADS  Google Scholar 

  16. M. Matsui and M. Akaogi, Mol. Simul. 6, 239 (1991).

    Article  Google Scholar 

  17. M. C. Mitchell, M. Gallo, and T. M. Nenoff, “Computer Simulations of Adsorption and Diffusion for Binary Mixtures of Methane and Hydrogen in Titanosilicates,” J. Chem. Phys. 121, 1910 (2004).

    Article  ADS  Google Scholar 

  18. V. V. Hoang, “Molecular Dynamics Study on Structure and Properties of Liquid and Amorphous Al2O3,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 134204 (2004).

    Article  ADS  Google Scholar 

  19. B. T. H. L. Khanh, V. V. Hoang, and H. Zung, “Structural Properties of Amorphous Fe2O3 Nanoparticles,” Eur. Phys. J. D 49, 325–332 (2008).

    Article  ADS  Google Scholar 

  20. C. Xiaobo and S. S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev. 107, 2891–2959 (2007).

    Article  Google Scholar 

  21. D. K. Belashchenko, “Computer Simulation of Structure and Properties of Non-Crystallic Oxides,” Adv. Chem. 66, 9 (1997).

    Google Scholar 

  22. G. S. Herman, Z. Dohnalek, N. Ruzycki, and U. Diebold “Experimental Investigation of the Interaction of Water and Methanol with Anatase-TiO2 (101),” J. Phys. Chem. B 107, 2788–2795 (2003).

    Article  Google Scholar 

  23. S. Yamamoto, T. Kendelewicz, J. T. Newberg, G. Ketteler, D. E. Starr, E. R. Mysak, K. J. Andersson, Hirohito Ogasawara, Hendrik Bluhm, Miquel Salmeron, Gordon E. Brown, Jr., and Anders Nilsson, “Water Adsorption on α-Fe2O3 (0001) at Near Ambient Conditions,” J. Phys. Chem. C 114, 2256–2266 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dushanov, E., Kholmurodov, K. & Yasuoka, K. Molecular dynamics studies of the interaction between water and oxide surfaces. Phys. Part. Nuclei Lett. 9, 541–551 (2012). https://doi.org/10.1134/S1547477112060064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112060064

Keywords

Navigation