Skip to main content
Log in

In-medium pseudoscalar D/B mesons and charmonium decay width

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields \(\sigma\), \(\zeta\), \(\delta\) and \(\chi\). Hence, through medium modification of \(\sigma\), \(\zeta\), \(\delta\) and \(\chi\) fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using \({}^{3}P_{0}\) model, we calculate the in-medium decay width of the higher charmonium states \(\psi(3686)\), \(\psi(3770)\) and \(\chi(3556)\) to the \(D\bar{D}\) pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CERN press release New State of Matter created at CERN, Feb. 10, 2000

  2. S. Chattopadhyay, Subikash Choudhury, Debojit Sarkar, Indian Natl. Sci. Acad. 81, 321 (2015)

    Google Scholar 

  3. R. Vogt, Ultra-relativistic Heavy-Ion Collisions (Elsevier, 2007)

  4. A. Capella, Phys. Lett. B 364, 175 (1995)

    Article  ADS  Google Scholar 

  5. S. Soff, S.A. Bass, M. Bleicher, L. Bravina, M. Gorenstein, E. Zabrodin, H. Stcker, W. Grein, Phys. Lett. B 471, 89 (1999)

    Article  ADS  Google Scholar 

  6. J.D. Bjorken, Fermilab-Pub-82/59-THY, Batavia (1982)

  7. N. Masera, Nucl. Phys. A 590, 93c (1995) (for the HELIOS-3 Collaboration)

    Article  ADS  Google Scholar 

  8. DLS Collaboration (W.K. Wilson et al.), Phys. Rev. C 57, 1865 (1998)

    Article  Google Scholar 

  9. D.K. Srivastava, Rupa Chatterjee, Phys. Rev. C 80, 054914 (2009)

    Article  ADS  Google Scholar 

  10. M.C. Abreu et al., Nucl. Phys. A 661, 93 (1999)

    Article  ADS  Google Scholar 

  11. G.M. Garcia, J. Phys. G: Nucl. Part. Phys. 38, 124034 (2011) (for the ALICE Collaboration)

    Article  ADS  Google Scholar 

  12. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 232301 (2007)

    Article  Google Scholar 

  13. C. Loizides, J. Phys. G: Nucl. Part. Phys. 38, 124040 (2011) (for the ALICE Collaboration)

    Article  ADS  Google Scholar 

  14. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005)

    Article  Google Scholar 

  15. T. Matsui, H. Satz, Phys. Lett. B 178, 146 (1986)

    Article  Google Scholar 

  16. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  17. M.J. Leitch et al., Phys. Rev. Lett. 72, 2542 (1994)

    Article  ADS  Google Scholar 

  18. C. Gerschel, J. Hufner, Phys. Rev. Lett. B 207, 253 (1988)

    Article  ADS  Google Scholar 

  19. M.I. Gorenstein, A.P. Kostyuk, H. Stocker, W. Greiner, J. Phys. G 27, 7 (2001)

    Article  Google Scholar 

  20. B. Zhang, C.M. Ko, B.A. Li, Z. Lin, B.H. Sa, Phys. Rev. C 62, 054905 (2000)

    Article  ADS  Google Scholar 

  21. W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 623, 570 (1997)

    Article  ADS  Google Scholar 

  22. E.L. Bratkovskaya, W. Cassing, H. Stocker, Phys. Rev. C 67, 054905 (2003)

    Article  ADS  Google Scholar 

  23. B. Friman, S. Lee, T. Song, Phys. Lett. B 548, 153 (2002)

    Article  ADS  Google Scholar 

  24. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, 241 (2000)

    Article  ADS  Google Scholar 

  25. C. Becchi, G. Morpurgo, Phys. Lett. 17, 352 (1965) Phys. Rev. B 140

    Article  ADS  Google Scholar 

  26. D. Faiman, A.W. Hendry, Phys. Rev. 173, 1720 (1968) 180

    Article  ADS  Google Scholar 

  27. R. Bonnaz, B. Silvestre-Brac, Few-Body Syst. 27, 163 (1999)

    Article  ADS  Google Scholar 

  28. J. Ferretti, E. Santopinto, arXiv:1506.04415 [hep-ph]

  29. S. Furui, A. Faessler, Nucl. Phys. Phys. A 468, 669 (1987)

    Article  ADS  Google Scholar 

  30. R. kokoski, N. Isgur, Phys. Rev. D 35, 907 (1987)

    Article  ADS  Google Scholar 

  31. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  32. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  33. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  34. B.F. Li, W.Z. Deng, X.L. Chen, arXiv:1105.1620[hep-ph]

  35. S. Dobbs et al., Phys. Rev. Lett. 101, 182003 (2008)

    Article  ADS  Google Scholar 

  36. J. Lees et al., Phys. Rev. D 84, 091101 (2011)

    Article  ADS  Google Scholar 

  37. I. Adachi et al., Phys. Rev. Lett. 108, 032001 (2012)

    Article  ADS  Google Scholar 

  38. J. Vijande, F. Fernndez, A. Valcarce, J. Phys. G, Nucl. Part. Phys. 31, 481 (2005)

    Article  ADS  Google Scholar 

  39. K. Tsushima, F.C. Khanna, Phys. Lett. B 552, 138 (2003)

    Article  ADS  Google Scholar 

  40. L. Tolos, A. Ramos, T. Mizutani, Phys. Rev. C 77, 015207 (2008)

    Article  ADS  Google Scholar 

  41. A. Kumar, A. Mishra, Eur. Phys. J. A 47, 164 (2011)

    Article  ADS  Google Scholar 

  42. D. Pathak, A. Mishra, Phys. Rev. C 91, 045206 (2015)

    Article  ADS  Google Scholar 

  43. D. Pathak, A. Mishra, Int. J. Mod. Phys. E 23, 0073 (2014)

    Article  Google Scholar 

  44. K. Azizi, H. Sundu, Eur. Phys. J. C 74, 3021 (2014)

    Article  ADS  Google Scholar 

  45. A. Hayashigaki, Phys. Lett. B 487, 96 (2000)

    Article  ADS  Google Scholar 

  46. Z.G. Wang, T. Huang, Phys. Rev. C 84, 048201 (2011)

    Article  ADS  Google Scholar 

  47. Z.G. Wang, Phys. Rev. C 92, 065205 (2015)

    Article  ADS  Google Scholar 

  48. Z.G. Wang, Int. J. Mod. Phys. A 28, 1350049 (2013)

    Article  ADS  Google Scholar 

  49. T. Hilger, R. Thomas, B. Kampfer, Phys. Rev. C 79, 025202 (2009)

    Article  ADS  Google Scholar 

  50. K. Suzuki, P. Gubler, M. Oka, Phys. Rev. C 93, 045209 (2016)

    Article  ADS  Google Scholar 

  51. A. Kumar, R. Chhabra, Phys. Rev. C 92, 035208 (2015)

    Article  ADS  Google Scholar 

  52. A. Kumar, Adv. High Energy Phys. 2014, 549726 (2014)

    Article  Google Scholar 

  53. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stcker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  54. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  55. A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stocker, Phys. Rev. C 69, 015202 (2004)

    Article  ADS  Google Scholar 

  56. A. Kumar, A. Mishra, Phys. Rev. C 82, 045207 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Mishra, Phys. Rev. C 91, 035201 (2015)

    Article  ADS  Google Scholar 

  58. Y. Kwon, C. Sasaki, W. Weise, Phys. Rev. C 81, 065203 (2010)

    Article  ADS  Google Scholar 

  59. S. Zschocke, O.P. Pavlenko, B. Kampfer, Eur. Phys. J. A 15, 529 (2002)

    Article  ADS  Google Scholar 

  60. V.L. Eletsky, Phys. Lett. B 352, 440 (1995)

    Article  ADS  Google Scholar 

  61. A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006)

    Article  ADS  Google Scholar 

  62. A. Mishra, S. Schramm, W. Greiner, Phys. Rev. C 78, 024901 (2008)

    Article  ADS  Google Scholar 

  63. Y. Koike, A. Hayashigaki, Prog. Theor. Phys. 98, 631 (1997)

    Article  ADS  Google Scholar 

  64. R. Thomas, T. Hilger, B. Kampfer, Nucl. Phys. A 795, 19 (2007)

    Article  ADS  Google Scholar 

  65. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 71, 397 (1977)

    Article  ADS  Google Scholar 

  66. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 72, 57 (1977)

    Article  ADS  Google Scholar 

  67. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  68. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 9, 1415 (1974)

    Article  ADS  Google Scholar 

  69. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 11, 1272 (1975)

    Article  ADS  Google Scholar 

  70. P. Wang, Z.Y. Zhang, Y.W. Yu, Commun. Theor. Phys. 36, 71 (2001)

    Article  Google Scholar 

  71. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, R.H. Landau, Phys. Rev. C 59, 2824 (1999)

    Article  ADS  Google Scholar 

  72. G.Q. Li, C.M. Ko, Phys. Lett. B 338, 118 (1994)

    Article  ADS  Google Scholar 

  73. N. Kaiser, P. de Homont, W. Weise, Phys. Rev. C 77, 025204 (2008)

    Article  ADS  Google Scholar 

  74. A. Sibirtsev, K. Tsushima, A.W. Thomas, Eur. Phys. J. A 6, 351 (1999)

    Article  ADS  Google Scholar 

  75. C.E. Jimenez-Tejero, A. Ramos, L. Tolos, I. Vidana, Phys. Rev. C 84, 015208 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhabra, R., Kumar, A. In-medium pseudoscalar D/B mesons and charmonium decay width. Eur. Phys. J. A 53, 105 (2017). https://doi.org/10.1140/epja/i2017-12285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12285-6

Navigation