Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 3, 2009

A squalene epoxidase from Nigella sativa participates in saponin biosynthesis and mediates terbinafine resistance in yeast

  • Marta Lipinski EMAIL logo , Martin Scholz , Kay Pieper , Rainer Fischer , Dirk Prüfer and Kai Müller
From the journal Open Life Sciences

Abstract

Squalene epoxidase catalyzes the formation of 2,3-oxidosqualene from squalene and in plants is the last enzyme common to all biosynthetic pathways leading to an array of triterpene derivatives like phytosterols, brassinosteroid phytohormones or saponins. In this work, we present a squalene epoxidase gene (NSSQE1) from the triterpene saponin producing plant Nigella sativa. The gene product showed a high degree of homology to functional squalene epoxidases (SQEs) from Arabidopsis thaliana and was able to complement SQE deficient yeast that harboured a knockout mutation in the underlying erg1 gene. Moreover, the expression of the NSSQE1 gene in ERG1 wild type yeast revealed that NSSQE1 conferred resistance towards terbinafine, an inhibitor of fungal SQEs. The latter suggested that a terbinafine-dependent NSSQE1 selection marker system can be developed for yeast. The gene NSSQE1 was ubiquitously expressed in all plant tissues analysed, including roots where no triterpene saponins are produced. Therefore, we argue that NSSQE1 is a housekeeping gene for triterpene metabolism in Nigella sativa. Similar to triterpene saponins, NSSQE1 was up-regulated by methyl jasmonate in leaves and should also be functionally involved in saponin biosynthesis in Nigella sativa.

[1] Ghedira K., La nigelle cultivée: Nigella sativa L. (Ranunculaceae), Phytotherapie, 2006, 4, 220–226, (in French) http://dx.doi.org/10.1007/s10298-006-0187-110.1007/s10298-006-0187-1Search in Google Scholar

[2] Ramadan M.F., Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview, Int. J. Food Sci. Technol., 2007, 42, 1208–1218 http://dx.doi.org/10.1111/j.1365-2621.2006.01417.x10.1111/j.1365-2621.2006.01417.xSearch in Google Scholar

[3] Kumara S.S.M., Huat B.T.K., Extraction, isolation and characterization of anti-tumor principle, α-Hederin, from the seeds of Nigella sativa, Planta Med., 2001, 67, 29–32 http://dx.doi.org/10.1055/s-2001-1062810.1055/s-2001-10628Search in Google Scholar PubMed

[4] Tian Z., Liu Y.-M., Chen S.-B., Yang J.-S., Xiao P.-G., Wang L., et al., Cytotoxicity of two triterpenoids from Nigella glandulifera, Molecules, 2006, 11, 693–699 http://dx.doi.org/10.3390/1109069310.3390/11090693Search in Google Scholar PubMed PubMed Central

[5] Scholz M., Lipinski M., Luftmann H., Leupold M., Ofir R., Fischer, R. et al., Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa, Phytochemistry, 2009, accepted for publication 10.1016/j.phytochem.2009.01.018Search in Google Scholar PubMed

[6] Hostettmann K., Marston A., Saponins, Chemistry and Pharmacology of Natural Products, Cambridge University Press, Cambridge, 1995 Search in Google Scholar

[7] Lichtenthaler H.K., The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 1999, 50, 322–328 http://dx.doi.org/10.1146/annurev.arplant.50.1.4710.1146/annurev.arplant.50.1.47Search in Google Scholar PubMed

[8] Phillips D.R., Rasbery J.M., Bartel B., Matsuda S.P.T., Biosynthetic diversity in plant triterpene cyclization, Curr. Opin. Plant Biol., 2006, 9, 305–314 http://dx.doi.org/10.1016/j.pbi.2006.03.00410.1016/j.pbi.2006.03.004Search in Google Scholar PubMed

[9] Xu R., Fazio G.C., Matsuda S.P.T., On the origin of triterpenoid skeletal diversity, Phytochemistry, 2004, 65, 261–291 http://dx.doi.org/10.1016/j.phytochem.2003.11.01410.1016/j.phytochem.2003.11.014Search in Google Scholar PubMed

[10] Busquets A., Keim V., Closa M., del Arco A., Boronat A., Arró M., et al., Arabidopsis thaliana contains a single gene encoding squalene synthase, Plant. Mol. Biol., 2008, 67, 25–36 http://dx.doi.org/10.1007/s11103-008-9299-310.1007/s11103-008-9299-3Search in Google Scholar PubMed

[11] Rasbery J.M., Shan H., LeClair R.J., Norman M., Matsuda S.P.T., Bartel B., Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development, J. Biol. Chem., 2007, 282, 17002–17013 http://dx.doi.org/10.1074/jbc.M61183120010.1074/jbc.M611831200Search in Google Scholar PubMed

[12] Colicelli J., Birchmeier C., Michaeli T., O’Neill K., Riggs M., Wigler M., Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase, Proc. Natl. Acad. Sci. USA., 1989, 86, 3599–3603 http://dx.doi.org/10.1073/pnas.86.10.359910.1073/pnas.86.10.3599Search in Google Scholar

[13] Gietz R.D., Woods R.A., Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Meth. Enzymol., 2002, 350, 87–96 http://dx.doi.org/10.1016/S0076-6879(02)50957-510.1016/S0076-6879(02)50957-5Search in Google Scholar

[14] Landl K.M., Klösch B., Turnowsky F., ERG1, encoding squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae, Yeast, 1996, 12, 609–613 http://dx.doi.org/10.1002/(SICI)1097-0061(199605)12:6<609::AID-YEA949>3.0.CO;2-B10.1002/(SICI)1097-0061(199605)12:6<609::AID-YEA949>3.0.CO;2-BSearch in Google Scholar

[15] Ruckenstuhl C., Eidenberger A., Lang S., Turnowsky F., Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity, Biochem. Soc. Trans., 2005, 33, 1197–1201 http://dx.doi.org/10.1042/BST2005119710.1042/BST20051197Search in Google Scholar

[16] Suzuki H., Achnine L., Xu R., Matsuda S.P.T., Dixon R.A., A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula, Plant J., 2002, 32, 1033–1048 http://dx.doi.org/10.1046/j.1365-313X.2002.01497.x10.1046/j.1365-313X.2002.01497.xSearch in Google Scholar

[17] Ruckenstuhl C., Lang S., Poschenel A., Eidenberger A., Baral P.K., Kohút P., et al., Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants, Antimicrob. Agents Chemother., 2007, 51, 275–284 http://dx.doi.org/10.1128/AAC.00988-0610.1128/AAC.00988-06Search in Google Scholar

Published Online: 2009-5-3
Published in Print: 2009-6-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-009-0002-8/html
Scroll to top button