Contribution of residue B5 to the folding and function of insulin and IGF-I: constraints and fine-tuning in the evolution of a protein family

J Biol Chem. 2010 Feb 12;285(7):5040-55. doi: 10.1074/jbc.M109.062992. Epub 2009 Dec 3.

Abstract

Proinsulin exhibits a single structure, whereas insulin-like growth factors refold as two disulfide isomers in equilibrium. Native insulin-related growth factor (IGF)-I has canonical cystines (A6-A11, A7-B7, and A20-B19) maintained by IGF-binding proteins; IGF-swap has alternative pairing (A7-A11, A6-B7, and A20-B19) and impaired activity. Studies of mini-domain models suggest that residue B5 (His in insulin and Thr in IGFs) governs the ambiguity or uniqueness of disulfide pairing. Residue B5, a site of mutation in proinsulin causing neonatal diabetes, is thus of broad biophysical interest. Here, we characterize reciprocal B5 substitutions in the two proteins. In insulin, His(B5) --> Thr markedly destabilizes the hormone (DeltaDeltaG(u) 2.0 +/- 0.2 kcal/mol), impairs chain combination, and blocks cellular secretion of proinsulin. The reciprocal IGF-I substitution Thr(B5) --> His (residue 4) specifies a unique structure with native (1)H NMR signature. Chemical shifts and nuclear Overhauser effects are similar to those of native IGF-I. Whereas wild-type IGF-I undergoes thiol-catalyzed disulfide exchange to yield IGF-swap, His(B5)-IGF-I retains canonical pairing. Chemical denaturation studies indicate that His(B5) does not significantly enhance thermodynamic stability (DeltaDeltaG(u) 0.2 +/- 0.2 kcal/mol), implying that the substitution favors canonical pairing by destabilizing competing folds. Whereas the activity of Thr(B5)-insulin is decreased 5-fold, His(B5)-IGF-I exhibits 2-fold increased affinity for the IGF receptor and augmented post-receptor signaling. We propose that conservation of Thr(B5) in IGF-I, rescued from structural ambiguity by IGF-binding proteins, reflects fine-tuning of signal transduction. In contrast, the conservation of His(B5) in insulin highlights its critical role in insulin biosynthesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Circular Dichroism
  • Disulfides
  • Glycosylation
  • Humans
  • Insulin / chemical synthesis
  • Insulin / chemistry*
  • Insulin / pharmacology*
  • Insulin-Like Growth Factor I / chemical synthesis
  • Insulin-Like Growth Factor I / chemistry*
  • Insulin-Like Growth Factor I / pharmacology*
  • Magnetic Resonance Spectroscopy
  • Mice
  • Phosphorylation / drug effects
  • Proinsulin / biosynthesis
  • Proinsulin / genetics
  • Proinsulin / metabolism
  • Protein Folding
  • Protein Stability
  • Signal Transduction / drug effects
  • Structure-Activity Relationship

Substances

  • Disulfides
  • Insulin
  • Insulin-Like Growth Factor I
  • Proinsulin