Activation of Escherichia coli antiterminator BglG requires its phosphorylation

Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15906-11. doi: 10.1073/pnas.1210443109. Epub 2012 Sep 10.

Abstract

Transcriptional antiterminator proteins of the BglG family control the expression of enzyme II (EII) carbohydrate transporters of the bacterial phosphotransferase system (PTS). In the PTS, phosphoryl groups are transferred from phosphoenolpyruvate (PEP) via the phosphotransferases enzyme I (EI) and HPr to the EIIs, which phosphorylate their substrates during transport. Activity of the antiterminators is negatively controlled by reversible phosphorylation catalyzed by the cognate EIIs in response to substrate availability and positively controlled by the PTS. For the Escherichia coli BglG antiterminator, two different mechanisms for activation by the PTS were proposed. According to the first model, BglG is activated by HPr-catalyzed phosphorylation at a site distinct from the EII-dependent phosphorylation site. According to the second model, BglG is not activated by phosphorylation, but solely through interaction with EI and HPr, which are localized at the cell pole. Subsequently BglG is released from the cell pole to the cytoplasm as an active dimer. Here we addressed this discrepancy and found that activation of BglG requires phosphorylatable HPr or the HPr homolog FruB in vivo. Further, we uniquely demonstrate that purified BglG protein becomes phosphorylated by FruB as well as by HPr in vitro. Histidine residue 208 in BglG is essential for this phosphorylation. These data suggest that BglG is in fact activated by phosphorylation and that there is no principal difference between the PTS-exerted mechanisms controlling the activities of BglG family proteins in Gram-positive and Gram-negative bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism
  • Cytoplasm / genetics
  • Cytoplasm / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Models, Biological*
  • Phosphoenolpyruvate Sugar Phosphotransferase System / genetics
  • Phosphoenolpyruvate Sugar Phosphotransferase System / metabolism*
  • Phosphorylation / physiology
  • Protein Kinases
  • Protein Multimerization / physiology*
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • Escherichia coli Proteins
  • RNA-Binding Proteins
  • antiterminator proteins, Bacteria
  • Protein Kinases
  • fruB protein, E coli
  • Phosphoenolpyruvate Sugar Phosphotransferase System