Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest

PLoS One. 2014 Dec 2;9(12):e114278. doi: 10.1371/journal.pone.0114278. eCollection 2014.

Abstract

Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N) turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW) exposed site, representing today's climatic conditions, to a southwest (SW) exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average). In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August), 24 and 72 hours after rewetting (August) and after a regeneration period of four weeks (September). To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend, which may impact emission rates of the greenhouse gas N2O.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaea / metabolism*
  • Bacteria / metabolism*
  • Catalysis
  • Climate Change*
  • Europe
  • Fagus / metabolism*
  • Nitrogen / metabolism*
  • Soil*

Substances

  • Soil
  • Nitrogen

Grants and funding

This work has been supported by the German Science Foundation (DFG) under the contract numbers SCHL 447/11-1, DA 1217/2-1, and KO 1035/41-1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.