B-H···π Interaction: A New Type of Nonclassical Hydrogen Bonding

J Am Chem Soc. 2016 Apr 6;138(13):4334-7. doi: 10.1021/jacs.6b01249. Epub 2016 Feb 29.

Abstract

For the first time, nonclassical hydrogen (H)-bonding involving a B-H···π interaction is described utilizing both quantum chemical predictions and experimental realization. In the gas phase, a B-H···π H-bond is observed in either B2H6···benzene (ΔE = -5.07 kcal/mol) or carborane···benzene (ΔE = -3.94 kcal/mol) complex at reduced temperatures. Ir-dimercapto-carborane complexes [Cp*Ir(S2C2B10H10)] are designed to react with phosphines PR3 (R = C6H4X, X = H, F, OMe) to give [Cp*Ir(PR3)S2C2B10H10] for an investigation of B-H···π interactions at ambient temperatures. X-ray diffraction studies reveal that the interaction between the carborane BH bonds and the phosphine aryl substituents involves a BH···π H-bond (H···π distance: 2.40-2.76 Å). (1)H NMR experiments reveal that B-H···π interactions exist in solution according to measured (1)H{(11)B} signals at ambient temperatures in the range 0.0 ≤ δ ≤ 0.3 ppm. These are high-field shifted by more than 1.5 ppm relative to the (1)H{(11)B} signals obtained for the PMe3 analog without B-H···π bonding. Quantum chemical calculations suggest that the interaction is electrostatic and the local (B)H···ring stretching force constant is as large as the H-bond stretching force constant in the water dimer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.