Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biogeosciences Année : 2014

Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC

Résumé

This paper deals with the simulation of microbial degradation of organic matter in soil within the pore space at a microscopic scale. Pore space was analysed with micro-computed tomography and described using a sphere network coming from a geometrical modelling algorithm. The biological model was improved regarding previous work in order to include the transformation of dissolved organic compounds and diffusion processes. We tested our model using experimental results of a simple substrate decomposition experiment (fructose) within a simple medium (sand) in the presence of different bacterial strains. Separate incubations were carried out in microcosms using five different bacterial communities at two different water potentials of −10 and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content, and we tested the model without changing any parameters at low water content. Same as for the experimental data, our simulation results showed that the decrease in water content caused a decrease of mineralization rate. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content.
Fichier principal
Vignette du fichier
2014_Monga_Biogeosciences_1.pdf (2.24 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01192468 , version 1 (27-05-2020)

Licence

Paternité

Identifiants

Citer

O. Monga, Patricia Garnier, Valerie Pot-Genty, E. Coucheney, N. Nunan, et al.. Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC. Biogeosciences, 2014, 11 (8), pp.2201-2209. ⟨10.5194/bg-11-2201-2014⟩. ⟨hal-01192468⟩
85 Consultations
47 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More