Biophysical Journal
Volume 105, Issue 9, 5 November 2013, Pages 2016-2023
Journal home page for Biophysical Journal

Article
Mobility of Core Water in Bacillus subtilis Spores by 2H NMR

https://doi.org/10.1016/j.bpj.2013.09.022Get rights and content
Under an Elsevier user license
open archive

Abstract

Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore’s core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore’s dormancy and thermal stability. Here, we use 2H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn2+ ions. We also report and analyze the solid-state 2H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (∼25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination.

Cited by (0)