Skip to main content
Log in

The Influence of Humic Substances on the Sorption of Three Organic Contaminants with Different Structure and Polarity to Clay Minerals

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The sorption of three organic contaminants with different structure and polarity including non-polar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), and polar 1,2-dichlorobenzene (DCB) onto original kaolinite, smectite, vermiculite, and fulvic acid (FA)/humic acid (HA)–clay complexes were investigated, and possible sorption mechanisms were inferred from sorption isotherms and characteristics of humic substances (HS) and HS–mineral complexes. Results showed smectite and vermiculite had stronger sorption ability than kaolinite, and the adsorbed amount of DCB was much higher than that of PHEN and TeCB on each clay. Due to FA/HA-facilitated hydrophobic interaction, FA/HA–clay complexes except FA–vermiculite complex showed a stronger affinity for PHEN and TeCB than the original clays, particularly for HA–clay complexes. The non-linearity parameter values of n for all the Freundlich sorption isotherms of DCB were greater than 1, indicating that clays possessed some unique sites with strong affinity and capacity to sorb DCB from aqueous solutions. FA/HA did not significantly affect the sorption of polar DCB on clays, implying sorption of DCB on clays was probably due to polar interactions between the polar group of DCB and clays. Cation-π bonding between PHEN and iron cation was directly evidenced by X-ray photoelectron spectroscopy, and FA impeded the sorption of PHEN on vermiculite by occupation of iron cation sites. This study will benefit understanding behaviors of contaminants in the soil environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brunetti, G., Mezzapesa, G. N., Traversa, A., Bonifacio, E., Farrag, K., Senesi, N., & D’Orazio, V. (2016). Characterization of clay- and silt-sized fractions and corresponding humic acids along a terra rossa soil profile. Clean-Soil Air Water, 44(10), 1375–1384.

    Article  CAS  Google Scholar 

  • Celis, R., Hermosin, M. C., Cox, L., & Cornejo, J. (1999). Sorption of 2,4-dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids. Environmental Science and Technology, 33, 1200–1206.

    Article  CAS  Google Scholar 

  • Celis, R., Jonge, H. D., Jonge, L. W. D., Real, M., Hermosin, M. C., & Cornejo, J. (2006). The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil. European Journal of Soil Science, 57(3), 308–319.

    Article  CAS  Google Scholar 

  • Du, H. H., Chen, W. L., Cai, P., Rong, X. M., Dai, K., Peacock, C. L., & Huang, Q. Y. (2016). Cd(II) sorption on montmorillonite-humic acid-bacteria composites. Scientific Reports, 6, 19499.

    Article  CAS  Google Scholar 

  • Han, L. F., Sun, K., Jin, J., & Xing, B. S. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121.

    Article  CAS  Google Scholar 

  • Hengpraprom, S., Lee, C. M., & Coates, J. T. (2006). Sorption of humic acids and α-endosulfan by clay minerals. Environmental Toxicology and Chemistry, 25(1), 11–17.

    Article  CAS  Google Scholar 

  • Hundal, L. S., Thompson, M. L., Laird, D. A., & Carmo, A. M. (2001). Sorption of phenanthrene by reference smectites. Environmental Science and Technology, 35(17), 3456–3461.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13(3), 241–248.

    Article  CAS  Google Scholar 

  • Liu, W. P., Gan, J. Y., Papiernik, S. K., & Yates, S. R. (2000). Structural influences in relative sorptivity of chloroacetanilide herbicides on soil. Journal of Agricultural and Food Chemistry, 48(9), 4320–4325.

    Article  CAS  Google Scholar 

  • Means, J. C., Wood, S. G., Hassett, J. J., & Banwart, W. L. (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environmental Science and Technology, 14(12), 1524–1528.

    Article  CAS  Google Scholar 

  • Namjesnik-Dejanovic, K., Maurice, P. A., Aiken, G. R., Cabaniss, S., Chin, Y. P., & Pullin, M. J. (2000). Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8. Soil Science, 165(7), 545–559.

    Article  CAS  Google Scholar 

  • Pinnavaia, T. J., Hall, P. L., Cady, S. S., & Mortland, M. M. (1974). Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. Journal of Physical Chemistry, 78(10), 994–999.

    Article  CAS  Google Scholar 

  • Rastegari, M., Saeedi, M., Mollahosseini, A., & Ayatynia, M. (2016). Phenanthrene sorption onto kaolinite; heavy metals and organic matter effects. International Journal of Environmental Research, 10(3), 441–448.

    Google Scholar 

  • Simoes, A., Stringfellow, A. M., Smallman, D., Beaven, R., Marshall, J., Powrie, W., & Potter, H. A. B. (2011). Sorption of organic contaminants by Oxford clay and Mercia mudstone landfill liners. Quarterly Journal of Engineering Geology and Hydrogeology, 44(3), 345–360.

    Article  CAS  Google Scholar 

  • Smernik, R. J., & Kookana, R. S. (2015). The effects of organic matter–mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. Chemosphere, 119, 99–104.

    Article  CAS  Google Scholar 

  • Specht, C. H., Kumke, M. U., & Frimmel, F. H. (2000). Characterization of NOM adsorption to clay minerals by size exclusion chromatography. Water Research, 34(16), 4063–4069.

    Article  CAS  Google Scholar 

  • Wang, M. C., & Huang, P. M. (1989). Pyrogallol transformations as catalyzed by nontronite, bentonite, and kaolinite. Clays and Clay Minerals, 37(6), 525–531.

    Article  CAS  Google Scholar 

  • Wang, K. J., & Xing, B. S. (2005). Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality, 34(1), 342–349.

    Article  CAS  Google Scholar 

  • Werner, D., Garratt, J. A., & Pigott, G. (2013). Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. Journal of Soils and Sediments, 13(1), 129–139.

    Article  CAS  Google Scholar 

  • Wu, P. X., Tang, Y. N., Wang, W. M., Zhu, N. W., Li, P., Wu, J. H., Dang, Z., & Wang, X. D. (2011). Effect of dissolved organic matter from Guangzhou landfill leachate on sorption of phenanthrene by montmorillonite. Journal of Colloid and Interface Science, 361(2), 618–627.

    Article  CAS  Google Scholar 

  • Zalba, P., Amiotti, N. M., Galantini, J. A., & Pistola, S. (2016). Soil humic and fulvic acids from different land-use systems evaluated by E4/E6 ratios. Communications in Soil Science and Plant Analysis, 47(13–14), 1675–1679.

    Article  CAS  Google Scholar 

  • Zhang, L. C., Luo, L., & Zhang, S. Z. (2012). Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 406(14), 84–90.

    Article  CAS  Google Scholar 

  • Zhang, Y. J., Zhu, D. Q., & Yu, H. X. (2008). Sorption of aromatic compounds to clay mineral and model humic substance–clay complex: effects of solute structure and exchangeable cation. Journal of Environmental Quality, 37, 817–823.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 21407053, 41371444, and 31300422]; the Natural Science Foundation from Educational Commission of Anhui Province, China [grant number KJ2016A636]; and the Natural Science Foundation of Anhui Province, China [grant numbers 1308085MB28, 1408085QC47].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Xiong.

Electronic supplementary material

ESM 1

(DOC 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xiang, P., Bao, X. et al. The Influence of Humic Substances on the Sorption of Three Organic Contaminants with Different Structure and Polarity to Clay Minerals. Water Air Soil Pollut 228, 199 (2017). https://doi.org/10.1007/s11270-017-3380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3380-y

Keywords

Navigation