Skip to main content
Log in

Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2021

This article has been updated

Abstract

Floral nectar is commonly colonized by yeasts and bacteria, whose growth largely depends on their capacity to assimilate nutrient resources, withstand high osmotic pressures, and cope with unbalanced carbon-to-nitrogen ratios. Although the basis of the ecological success of these microbes in the harsh environment of nectar is still poorly understood, it is reasonable to assume that they are efficient nitrogen scavengers that can consume a wide range of nitrogen sources in nectar. Furthermore, it can be hypothesized that phylogenetically closely related strains have more similar phenotypic characteristics than distant relatives. We tested these hypotheses by investigating the growth performance on different nitrogen-rich substrates of a collection of 82 acinetobacters isolated from nectar and honeybees, representing members of five species (Acinetobacter nectaris, A. boissieri, A. apis, and the recently described taxa A. bareti and A. pollinis). We also analyzed possible links between growth performance and phylogenetic affiliation of the isolates, while taking into account their geographical origin. Results demonstrated that the studied isolates could utilize a wide variety of nitrogen sources, including common metabolic by-products of yeasts (e.g., ammonium and urea), and that phylogenetic relatedness was associated with the variation in nitrogen assimilation among the studied acinetobacters. Finally, nutrient source and the origin (sample type and country) of isolates also predicted the ability of the acinetobacters to assimilate nitrogen-rich compounds. Overall, these results demonstrate inter-clade variation in the potential of the acinetobacters as nitrogen scavengers and suggest that nutritional dependences might influence interactions between bacteria and yeasts in floral nectar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The nucleotide sequences determined in this work have been deposited in the GenBank/ENA/DDBJ databases under the accession numbers MN315286 to MN315354. All relevant results are included in this paper or available as supplementary materials at the journal’s website.

Change history

References

  1. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68(2):301–322. https://doi.org/10.2307/2398800

    Article  Google Scholar 

  2. Nepi M, Grasso DA, Mancuso S (2018) Nectar in plant-insect mutualistic relationships: from food reward to partner manipulation. Front Plant Sci 9:1063. https://doi.org/10.3389/fpls.2018.01063

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nepi M (2017) New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction? Acta Agrobot 70(1):1704. https://doi.org/10.5586/aa.1704

    Article  Google Scholar 

  4. Parachnowitsch AL, Manson JS, Sletvold N (2019) Evolutionary ecology of nectar. Ann Bot 123(2):247–261. https://doi.org/10.1093/aob/mcy132

    Article  CAS  PubMed  Google Scholar 

  5. Belisle M, Peay KG, Fukami T (2012) Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb Ecol 63(4):711–718. https://doi.org/10.1007/s00248-011-9975-8

    Article  PubMed  Google Scholar 

  6. Pozo MI, Lievens B, Jacquemyn H (2015) Impact of microorganisms on nectar chemistry, pollinator attraction and plant fitness. In: Peck RL (ed) Nectar: production, chemical composition and benefits to animals and plants. Nova Science Publishers Inc., New York, pp 1–40

    Google Scholar 

  7. Chappell CR, Fukami T (2018) Nectar yeasts: a natural microcosm for ecology. Yeast 35(6):417–423. https://doi.org/10.1002/yea.3311

    Article  CAS  PubMed  Google Scholar 

  8. Álvarez-Pérez S, Lievens B, Fukami T (2019) Yeast-bacterium interactions: the next frontier in nectar research. Trends Plant Sci 24(5):393–401. https://doi.org/10.1016/j.tplants.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  9. Klaps J, Lievens B, Álvarez-Pérez S (2020) Towards a better understanding of the role of nectar-inhabiting yeasts in plant-animal interactions. Fungal Biol Biotechnol 7:1. https://doi.org/10.1186/s40694-019-0091-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hausmann SL, Tietjen B, Rillig MC (2017) Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough. FEMS Microbiol Ecol 93(12):fix150. https://doi.org/10.1093/femsec/fix150

    Article  CAS  Google Scholar 

  11. Vannette RL, Fukami T (2017) Dispersal enhances beta diversity in nectar microbes. Ecol Lett 20(7):901–910. https://doi.org/10.1111/ele.12787

    Article  PubMed  Google Scholar 

  12. Pozo MI, Bartlewicz J, van Oystaeyen A, Benavente A, van Kemenade G, Wäckers F, Jacquemyn H (2018) Surviving in the absence of flowers: do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle? FEMS Microbiol Ecol 94(12):fiy196. https://doi.org/10.1093/femsec/fiy196

    Article  CAS  Google Scholar 

  13. Tsuji K, Fukami T (2018) Community-wide consequences of sexual dimorphism: evidence from nectar microbes in dioecious plants. Ecology 99(11):2476–2484 doi.org/10.1002/ecy.2494

    Article  PubMed  Google Scholar 

  14. Herrera CM, Canto A, Pozo MI, Bazaga P (2010) Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc Biol Sci 277(1682):747–754. https://doi.org/10.1098/rspb.2009.1485

    Article  PubMed  Google Scholar 

  15. Herrera CM (2017) Scavengers that fit beneath a microscope lens. Ecology 98(10):2725–2726. https://doi.org/10.1002/ecy.1874

    Article  PubMed  Google Scholar 

  16. Lievens B, Hallsworth JE, Pozo MI, Ben Belgacem Z, Stevenson A, Willems KA, Jacquemyn H (2015) Microbiology of sugar-rich environments: diversity, ecology and system constraints. Environ Microbiol 17(2):278–298. https://doi.org/10.1111/1462-2920.12570

    Article  CAS  PubMed  Google Scholar 

  17. Pozo MI, Lachance MA, Herrera CM (2012) Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol 80(2):281–293. https://doi.org/10.1111/j.1574-6941.2011.01286.x

    Article  CAS  PubMed  Google Scholar 

  18. Pozo MI, Herrera CM, Van den Ende W, Verstrepen K, Lievens B, Jacquemyn H (2015) The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microbiol Ecol 91(6):fiv055. https://doi.org/10.1093/femsec/fiv055

    Article  CAS  PubMed  Google Scholar 

  19. Pozo MI, Jacquemyn H (2019) Addition of pollen increases growth of nectar-living yeasts. FEMS Microbiol Lett 366(15):fnz191. https://doi.org/10.1093/femsle/fnz191

    Article  CAS  PubMed  Google Scholar 

  20. Herrera CM, Pérez R, Alonso C (2006) Extreme intraplant variation in nectar sugar composition in an insect-pollinated perennial herb. Am J Bot 93(4):575–581. https://doi.org/10.3732/ajb.93.4.575

    Article  PubMed  Google Scholar 

  21. Canto A, Pérez R, Medrano M, Castellanos MC, Herrera CM (2007) Intraplant variation in nectar sugar composition in two Aquilegia species (Ranunculaceae): contrasting patterns under field and greenhouse conditions. Ann Bot 99(4):653–660. https://doi.org/10.1093/aob/mcl291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer-Verlag, Dordrecht, pp 215–264

    Chapter  Google Scholar 

  23. Pozo MI, Herrera CM, Lachance MA, Verstrepen K, Lievens B, Jacquemyn H (2016) Species coexistence in simple microbial communities: unravelling the phenotypic landscape of co-occurring Metschnikowia species in floral nectar. Environ Microbiol 18(6):1850–1862. https://doi.org/10.1111/1462-2920.13037

    Article  CAS  PubMed  Google Scholar 

  24. Peay KG, Belisle M (1729) Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc Biol Sci 279:749–758. https://doi.org/10.1098/rspb.2011.1230

    Article  Google Scholar 

  25. Dhami MK, Hartwig T, Fukami T (2016) Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci 283(1840):20161455. https://doi.org/10.1098/rspb.2016.1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fridman S, Izhaki I, Gerchman Y, Halpern M (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4(1):97–104. https://doi.org/10.1111/j.1758-2229.2011.00309.x

    Article  PubMed  Google Scholar 

  27. Álvarez-Pérez S, Herrera CM (2013) Composition, richness and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 83(3):685–699. https://doi.org/10.1111/1574-6941.12027

    Article  CAS  PubMed  Google Scholar 

  28. Álvarez-Pérez S, Lievens B, Jacquemyn H, Herrera CM (2013) Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 63(Pt 4):1532–1539. https://doi.org/10.1099/ijs.0.043489-0

    Article  PubMed  Google Scholar 

  29. Sharaby Y, Rodríguez-Martínez S, Lalzar M, Halpern M, Izhaki I (2020) Geographic partitioning or environmental selection: what governs the global distribution of bacterial communities inhabiting floral nectar? Sci Total Environ 749:142305. https://doi.org/10.1016/j.scitotenv.2020.142305

    Article  CAS  PubMed  Google Scholar 

  30. Samuni-Blank M, Izhaki I, Laviad S, Bar-Massada A, Gerchman Y, Halpern M (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS One 9(6):e99107. https://doi.org/10.1371/journal.pone.0099107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim PS, Shin NR, Kim JY, Yun JH, Hyun DW, Bae JW (2014) Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera. J Microbiol 52(8):639–645. https://doi.org/10.1007/s12275-014-4078-0

    Article  CAS  PubMed  Google Scholar 

  32. Touchon M, Cury J, Yoon EJ, Krizova L, Cerqueira GC, Murphy C, Feldgarden M, Wortman J, Clermont D, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P, Rocha EPC (2014) The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 6(10):2866–2882. https://doi.org/10.1093/gbe/evu225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37(5):699–735. https://doi.org/10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  34. Van Assche A, Álvarez-Pérez S, de Breij A, De Brabanter J, Willems KA, Dijkshoorn L, Lievens B (2017) Phylogenetic signal in phenotypic traits related to carbon source assimilation and chemical sensitivity in Acinetobacter species. Appl Microbiol Biotechnol 101(1):367–379. https://doi.org/10.1007/s00253-016-7866-0

    Article  CAS  PubMed  Google Scholar 

  35. Cools P, Nemec A, Kämpfer VM (2019) Acinetobacter, Chryseobacterium, Moraxella, and other nonfermentative Gram-negative rods. In: Carroll KC, Pfaller MA, Landry ML, McAdam AJ, Patel R, Richter SS, Warnock DW (eds) Manual of Clinical Microbiology12th edn. ASM Press, Washington D.C., pp 829–857

    Google Scholar 

  36. La Scola B, Gundi VA, Khamis A, Raoult D (2006) Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44(3):827–832. https://doi.org/10.1128/JCM.44.3.827-832.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petanidou T (2007) Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer-Verlag, Dordrecht, pp 343–375

    Chapter  Google Scholar 

  41. Farrugia DN, Elbourne LD, Hassan KA, Eijkelkamp BA, Tetu SG, Brown MH, Shah BS, Peleg AY, Mabbutt BC, Paulsen IT (2013) The complete genome and phenome of a community-acquired Acinetobacter baumannii. PLoS One 8(3):e58628. https://doi.org/10.1371/journal.pone.0058628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/. Accessed 8 Apr 2020

    Google Scholar 

  43. Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268. https://doi.org/10.2307/2532051

    Article  CAS  PubMed  Google Scholar 

  44. Lin L (2000) A note on the concordance correlation coefficient. Biometrics 56:324–325

    Article  Google Scholar 

  45. Stevenson M., Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, Reiczigel J, Robison-Cox J, Sebastiani P, Solymos P, Yoshida K, Jones G, Pirikahu S, Firestone S, Kyle R, Popp J, Jay M, Reynard C (2020) epiR: Tools for the analysis of epidemiological data. R package version 1.0-14. https://CRAN.R-project.org/package=epiR. Accessed 8 Apr 2020

  46. Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw 28:1–9. https://doi.org/10.18637/jss.v028.c01

    Article  Google Scholar 

  47. Harrell FE, Dupont C, et al (2019) Hmisc: Harrell Miscellaneous. R package version 4.3-0. https://CRAN.R-project.org/package=Hmisc. Accessed 8 Apr 2020

  48. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15 www.jstor.org/stable/2461605

    Article  Google Scholar 

  49. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. https://doi.org/10.1093/bioinformatics/btg412

    Article  CAS  PubMed  Google Scholar 

  50. Garland Jr T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42(3):265–292. https://doi.org/10.1093/sysbio/42.3.265

    Article  Google Scholar 

  51. Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  52. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884. https://doi.org/10.1038/44766

    Article  CAS  PubMed  Google Scholar 

  53. Blomberg SP, Garland Jr T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x

    Article  PubMed  Google Scholar 

  54. Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756. https://doi.org/10.1111/j.2041-210X.2012.00196.x

    Article  Google Scholar 

  55. Kembel SW, Cowan PD, HelmusMR CWK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. https://doi.org/10.1093/bioinformatics/btq166

    Article  CAS  PubMed  Google Scholar 

  56. Kamilar JM, Cooper N (2013) Phylogenetic signal in primate behaviour, ecology and life history. Phil Trans R Soc B 368:20120341. https://doi.org/10.1098/rstb.2012.0341

    Article  PubMed  PubMed Central  Google Scholar 

  57. Molina-Venegas R, Rodríguez MA (2017) Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol Biol 17(1):53. https://doi.org/10.1186/s12862-017-0898-y

    Article  PubMed  PubMed Central  Google Scholar 

  58. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. https://doi.org/10.1093/bioinformatics/btm538

    Article  CAS  PubMed  Google Scholar 

  59. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  60. Narwani A, Alexandrou MA, Herrin J, Vouaux A, Zhou C, Oakley TH, Cardinale BJ (2015) Common ancestry is a poor predictor of competitive traits in freshwater green algae. PLoS One 10(9):e0137085. https://doi.org/10.1371/journal.pone.0137085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Revell LJ (2013) Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol Evol 4(8):754–759. https://doi.org/10.1111/2041-210X.12066

    Article  Google Scholar 

  62. Revell LJ, Schliep K, Valderrama E, Richardson JE (2018) Graphs in phylogenetic comparative analysis: Anscombe’s quartet revisited. Methods Ecol Evol 9(10):2145–2154. https://doi.org/10.1111/2041-210X.13067

    Article  Google Scholar 

  63. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  64. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan. Accessed 8 Apr 2020

  65. Estrela S, Vila JCC, Lu N, Bajic D, Rebolleda-Gomez M, Chang C-Y, Sanchez A (2020) Metabolic rules of microbial community assembly. bioRxiv. https://doi.org/10.1101/2020.03.09.984278

  66. Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segrè D, Mehta P, Sanchez A (2018) Emergent simplicity in microbial community assembly. Science 361(6401):469–474. https://doi.org/10.1126/science.aat1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herrero A, Flores E, Imperial J (2019) Nitrogen assimilation in bacteria. In: Schmidt TM (ed) Encyclopedia of Microbiology4th edn. Academic Press, San Diego, pp 280–300

    Google Scholar 

  68. Dhami MK, Hartwig T, Letten AD, Banf M, Fukami T (2018) Genomic diversity of a nectar yeast clusters into metabolically, but not geographically, distinct lineages. Mol Ecol 27(8):2067–2076. https://doi.org/10.1111/mec.14535

    Article  PubMed  Google Scholar 

  69. Cooper RM, Tsimring L, Hasty J (2017) Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. Elife 6:e25950. https://doi.org/10.7554/eLife.25950

    Article  PubMed  PubMed Central  Google Scholar 

  70. Geisinger E, Isberg RR (2015) Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog 11(2):e1004691. https://doi.org/10.1371/journal.ppat.1004691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roguz K, Bajguz A, Chmur M, Gołębiewska A, Roguz A, Zych M (2019) Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci Rep 9(1):15209. https://doi.org/10.1038/s41598-019-51170-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vannette RL, Fukami T (2018) Contrasting effects of yeasts and bacteria on floral nectar traits. Ann Bot 121(7):1343–1349. https://doi.org/10.1093/aob/mcy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4(11):e351. https://doi.org/10.1371/journal.pbio.0040351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil KR (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst 5(4):345–357.e6. https://doi.org/10.1016/j.cels.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu Q, Cui K, Lin J, Zhu Y, Xu Y (2017) Urea production by yeasts other than Saccharomyces in food fermentation. FEMS Yeast Res 17(7):fox072. https://doi.org/10.1093/femsyr/fox072

    Article  CAS  Google Scholar 

  76. Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci 281(1778):20132637. https://doi.org/10.1098/rspb.2013.2637

    Article  PubMed  PubMed Central  Google Scholar 

  77. Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21(11):2602–2616. https://doi.org/10.1111/j.1365-294X.2011.05402.x

    Article  CAS  PubMed  Google Scholar 

  78. Álvarez-Pérez S, Dhami MK, Pozo MI, Crauwels S, Verstrepen KJ, Herrera CM, Lievens B, Jacquemyn H (2021) Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii. Fungal Ecol 49:101016. https://doi.org/10.1016/j.funeco.2020.101016

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of KU Leuven’s PME&BIM Lab and the Scientia Terrae Research Institute for feedback. The constructive comments from the journal’s editor and four anonymous reviewers are gratefully acknowledged.

Funding

This work was supported by funding from the European Union’s Horizon 2020 research and innovation program (to SA-P, Marie Skłodowska-Curie Grant Agreement No. 742964) and the United States National Science Foundation (DEB 1737758). SA-P acknowledges a “Ramón y Cajal” contract funded by the Spanish Ministry of Science and Innovation [RYC2018-023847-I]. The funders had no role in the preparation of the manuscript or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and resources: all authors. Investigation, formal analysis, and data curation: SA-P and AVA. Writing—original draft preparation: SA-P. Writing—review and editing: all authors. Supervision: BL and TF. Funding: SA-P, BL, and TF.

Corresponding authors

Correspondence to Sergio Álvarez-Pérez or Bart Lievens.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Ethics approval was not required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Supplementary Information

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 85 kb)

ESM 3

(PDF 2202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Pérez, S., Tsuji, K., Donald, M. et al. Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters. Microb Ecol 81, 990–1003 (2021). https://doi.org/10.1007/s00248-020-01671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01671-x

Keywords

Navigation