Skip to main content
Log in

Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications

  • Invited Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is an emerging high-resolution intravascular imaging modality that can provide physicians with critical information, thereby enabling precise characterization of plaque morphology and luminal geometry and facilitating pre-intervention lesion assessment. As OCT has a higher sensitivity for lipid-rich plaque characterization than intravascular ultrasound, vulnerable plaque detection by OCT has thus been investigated. By evaluating both the calcium thickness and arc, OCT can be the ideal method for determining both the indication and endpoint of rotational atherectomy for calcified lesions prior to stent implantation. OCT has become applicable for the optimization of stent implantation with immediate and semi-automatic quantification of stent apposition and expansion to achieve potentially better clinical outcomes. In bifurcation lesions, OCT allows the visualization of the stent-link location overhanging the side-branch ostium and the guidewire recrossing point prior to the final kissing balloon inflation through three-dimensional reconstructed OCT images, providing us with deep insights into the mechanical optimization of stent struts. Furthermore, recent studies have reported several OCT-derived predictors of adverse clinical events. Important limitations of OCT, including the excessive contrast volume needed and observation of aorto-ostial lesions, may partially be overcome through the use of low-molecular-weight dextran and a guide extension catheter. The clinical applications of OCT have been expanding, and evidence on its clinical utility has been accumulating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2:1035–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388:2618–28.

    Article  PubMed  Google Scholar 

  3. Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38:3139–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.

    Article  PubMed  Google Scholar 

  5. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol. 2006;97:1172–5.

    Article  PubMed  Google Scholar 

  6. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  PubMed  CAS  Google Scholar 

  7. Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study. JACC Cardiovasc Imaging. 2015;8:451–60.

    Article  PubMed  Google Scholar 

  8. Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA, et al. 5-Year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol. 2010;55:2383–9.

    Article  PubMed  Google Scholar 

  9. Wu X, Mintz GS, Xu K, Lansky AJ, Witzenbichler B, Guagliumi G, et al. The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction) trial. JACC Cardiovasc Interv. 2011;4:495–502.

    Article  PubMed  Google Scholar 

  10. Tanaka A, Imanishi T, Kitabata H, Kubo T, Takarada S, Tanimoto T, et al. Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J. 2009;30:1348–55.

    Article  PubMed  Google Scholar 

  11. Stone GW, Webb J, Cox DA, Brodie BR, Qureshi M, Kalynych A, et al. Distal microcirculatory protection during percutaneous coronary intervention in acute ST-segment elevation myocardial infarction: a randomized controlled trial. J Am Med Assoc. 2005;293:1063–72.

    Article  CAS  Google Scholar 

  12. Stone GW, Maehara A, Muller JE, Rizik DG, Shunk KA, Ben-Yehuda O, et al. Plaque characterization to inform the prediction and prevention of periprocedural myocardial infarction during percutaneous coronary intervention: the CANARY trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC Cardiovasc Interv. 2015;8:927–36.

    Article  PubMed  Google Scholar 

  13. Onuma Y, Tanimoto S, Ruygrok P, Neuzner J, Piek JJ, Seth A, et al. Efficacy of everolimus eluting stent implantation in patients with calcified coronary culprit lesions: two-year angiographic and three-year clinical results from the SPIRIT II study. Catheter Cardiovasc Interv. 2010;76:634–42.

    Article  PubMed  Google Scholar 

  14. Kastrati A, Schömig A, Elezi S, Schühlen H, Dirschinger J, Hadamitzky M, et al. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol. 1997;30:1428–36.

    Article  PubMed  CAS  Google Scholar 

  15. Kawamoto H, Latib A, Ruparelia N, Ielasi A, D’Ascenzo F, Pennacchi M, et al. In-hospital and midterm clinical outcomes of rotational atherectomy followed by stent implantation: the ROTATE multicentre registry. EuroIntervention. 2016;12:1448–56.

    Article  PubMed  Google Scholar 

  16. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, et al. Clinical expert consensus document on standards for measurements and assessment of intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther. 2020;35:1–12.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma SK, Tomey MI, Teirstein PS, Kini AS, Reitman AB, Lee AC, et al. North American expert review of rotational atherectomy. Circ Cardiovasc Interv. 2019;12:e007448.

    Article  PubMed  Google Scholar 

  18. Barbato E, Carrié D, Dardas P, Fajadet J, Gaul G, Haude M, et al. European expert consensus on rotational atherectomy. EuroIntervention. 2015;11:30–6.

    Article  PubMed  Google Scholar 

  19. Safian RD, Feldman T, Muller DWM, Mason D, Schreiber T, Haik B, et al. Coronary Angioplasty and Rotablator Atherectomy Trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc Interv. 2001;53:213–20.

    Article  PubMed  CAS  Google Scholar 

  20. Whitlow PL, Bass TA, Kipperman RM, Sharaf BL, Ho KKL, Cutlip DE, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87:699–705.

    Article  PubMed  CAS  Google Scholar 

  21. Mehanna E, Bezerra HG, Prabhu D, Brandt E, Chamié D, Yamamoto H, et al. Volumetric characterization of human coronary calcification by frequency-domain optical coherence tomography. Circ J. 2013;77:2334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fujino A, Mintz G, Matsumura M, Yamamoto MH, Lee C, Hoshino M, et al. TCT-28: a new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2018;70:B12–3.

    Google Scholar 

  23. Kobayashi N, Ito Y, Yamawaki M, Araki M, Obokata M, Sakamoto Y, et al. Optical coherence tomography-guided versus intravascular ultrasound-guided rotational atherectomy in patients with calcified coronary lesions. EuroIntervention. 2020;16:e313–21.

    Article  PubMed  Google Scholar 

  24. Kubo T, Shimamura K, Ino Y, Yamaguchi T, Matsuo Y, Shiono Y, et al. Superficial calcium fracture after PCI as assessed by OCT. JACC Cardiovasc Imaging. 2015;8:1228–9.

    Article  PubMed  Google Scholar 

  25. Maejima N, Hibi K, Saka K, Akiyama E, Konishi M, Endo M, et al. Relationship between thickness of calcium on optical coherence tomography and crack formation after balloon dilatation in calcified plaque requiring rotational atherectomy. Circ J. 2016;80:1413–9.

    Article  PubMed  Google Scholar 

  26. Hahn JY, Chun WJ, Kim JH, Song YB, Oh JH, Koo BK, et al. Predictors and outcomes of side branch occlusion after main vessel stenting in coronary bifurcation lesions: results from the COBIS II registry (coronary bifurcation stenting). J Am Coll Cardiol. 2013;62:1654–9.

    Article  PubMed  Google Scholar 

  27. Kini AS, Vengrenyuk Y, Pena J, Yoshimura T, Panwar SR, Motoyama S, et al. Plaque morphology predictors of side branch occlusion after provisional stenting in coronary bifurcation lesion: results of optical coherence tomography bifurcation study (ORBID). Catheter Cardiovasc Interv. 2017;89:259–68.

    Article  PubMed  Google Scholar 

  28. Watanabe M, Uemura S, Sugawara Y, Ueda T, Soeda T, Takeda Y, et al. Side branch complication after a single-stent crossover technique: prediction with frequency domain optical coherence tomography. Coron Artery Dis. 2014;25:321–9.

    Article  PubMed  Google Scholar 

  29. Burzotta F, Trani C, Sianos G. Jailed balloon protection: a new technique to avoid acute side-branch occlusion during provisional stenting of bifurcated lesions. Bench test report and first clinical experience. EuroIntervention. 2010;5:809–13.

    Article  PubMed  Google Scholar 

  30. Saito S, Shishido K, Moriyama N, Ochiai T, Mizuno S, Yamanaka F, et al. Modified jailed balloon technique for bifurcation lesions. Catheter Cardiovasc Interv. 2018;92:E218–26.

    Article  PubMed  Google Scholar 

  31. Numasawa Y, Sakakura K, Yamamoto K, Yamamoto S, Taniguchi Y, Fujita H, et al. A novel side branch protection technique in coronary stent implantation: jailed Corsair technique. Cardiovasc Revasc Med. 2017;18:295–8.

    Article  PubMed  Google Scholar 

  32. Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K, et al. Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography. Cardiovasc Interv Ther. 2020;35:13–8.

    Article  PubMed  Google Scholar 

  33. Attizzani GF, Capodanno D, Ohno Y, Tamburino C. Mechanisms, pathophysiology, and clinical aspects of incomplete stent apposition. J Am Coll Cardiol. 2014;63:1355–67.

    Article  PubMed  Google Scholar 

  34. Shimamura K, Kubo T, Akasaka T, Kozuma K, Kimura K, Kawamura M, et al. Outcomes of everolimus-eluting stent incomplete stent apposition: a serial optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2015;16:23–8.

    Article  PubMed  Google Scholar 

  35. Soeda T, Uemura S, Park SJ, Jang Y, Lee S, Cho JM, et al. Incidence and clinical significance of poststent optical coherence tomography findings: one-year follow-up study from a multicenter registry. Circulation. 2015;132:1020–9.

    Article  PubMed  Google Scholar 

  36. Prati F, Romagnoli E, Burzotta F, Limbruno U, Gatto L, La Manna A, et al. Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging. 2015;8:1297–305.

    Article  PubMed  Google Scholar 

  37. Im E, Kim BK, Ko YG, Shin DH, Kim JS, Choi D, et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. Circ Cardiovasc Interv. 2014;7:88–96.

    Article  PubMed  CAS  Google Scholar 

  38. Romagnoli E, Gatto L, La Manna A, Burzotta F, Taglieri N, Saia F, et al. Role of residual acute stent malapposition in percutaneous coronary interventions. Catheter Cardiovasc Interv. 2017;90:566–75.

    Article  PubMed  Google Scholar 

  39. Hong YJ, Jeong MH, Ahn Y, Sim DS, Chung JW, Cho JS, et al. Plaque prolapse after stent implantation in patients with acute myocardial infarction: an intravascular ultrasound analysis. JACC Cardiovasc Imaging. 2008;1:489–97.

    Article  PubMed  Google Scholar 

  40. Hong YJ, Jeong MH, Choi YH, Song JA, Kim DH, Lee KH, et al. Impact of tissue prolapse after stent implantation on short- and long-term clinical outcomes in patients with acute myocardial infarction: an intravascular ultrasound analysis. Int J Cardiol. 2013;166:646–51.

    Article  PubMed  Google Scholar 

  41. Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. IVUS-guided versus OCT-guided coronary stent implantation: a critical appraisal. JACC Cardiovasc Imaging. 2017;10:1487–503.

    Article  PubMed  Google Scholar 

  42. Nakano M, Yahagi K, Otsuka F, Sakakura K, Finn AV, Kutys R, et al. Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. J Am Coll Cardiol. 2014;63:2510–20.

    Article  PubMed  Google Scholar 

  43. Fujii K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45:995–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hong MK, Mintz GS, Lee CW, Park DW, Choi BR, Park KH, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006;27:1305–10.

    Article  PubMed  Google Scholar 

  45. Sonoda S, Morino Y, Ako J, Terashima M, Hassan AH, Bonneau HN, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the SIRIUS trial. J Am Coll Cardiol. 2004;43:1959–63.

    Article  PubMed  Google Scholar 

  46. Doi H, Maehara A, Mintz GS, Yu A, Wang H, Mandinov L, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS Workhorse, Long Lesion, and Direct Stent Trials. JACC Cardiovasc Interv. 2009;2:1269–75.

    Article  PubMed  Google Scholar 

  47. Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko YG, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314:2155–63.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamura D, Wijns W, Price MJ, Jones MR, Barbato E, Akasaka T, et al. New volumetric analysis method for stent expansion and its correlation with final fractional flow reserve and clinical outcome: an ILUMIEN I Substudy. JACC Cardiovasc Interv. 2018;11:1467–78.

    Article  PubMed  Google Scholar 

  49. Okamura T, Onuma Y, Yamada J, Iqbal J, Tateishi H, Nao T, et al. 3D optical coherence tomography: new insights into the process of optimal rewiring of side branches during bifurcational stenting. EuroIntervention. 2014;10:907–15.

    Article  PubMed  Google Scholar 

  50. Okamura T, Nagoshi R, Fujimura T, Murasato Y, Yamawaki M, Ono S, et al. Impact of guidewire recrossing point into stent jailed side branch for optimal kissing balloon dilatation: core lab 3D optical coherence tomography analysis. EuroIntervention. 2018;13:e1785–93.

    Article  PubMed  Google Scholar 

  51. Nagoshi R, Okamura T, Murasato Y, Fujimura T, Yamawaki M, Ono S, et al. Feasibility and usefulness of three-dimensional optical coherence tomography guidance for optimal side branch treatment in coronary bifurcation stenting. Int J Cardiol. 2018;250:270–4.

    Article  PubMed  Google Scholar 

  52. Nishimura T, Okamura T, Fujimura T, Miyazaki Y, Mochizuki M, Oda T, et al. TCT-347 frequency of incomplete stent apposition at side-branch ostium after kissing balloon inflation predicted from pre-operative appearance of coronary artery bifurcation on 3-dimensional optical coherence tomograms. J Am Coll Cardiol. 2019;74:B344.

    Article  Google Scholar 

  53. Hikichi Y, Umezu M, Node K, Iwasaki K. Reduction in incomplete stent apposition area caused by jailed struts after single stenting at left main bifurcation lesions: micro-CT analysis using a three-dimensional elastic bifurcated coronary artery model. Cardiovasc Interv Ther. 2017;32:12–7.

    Article  PubMed  Google Scholar 

  54. Yamawaki M, Muramatsu T, Ashida K, Kishi K, Morino Y, Kinoshita Y, et al. Randomized comparison between 2-link cell design biolimus A9-eluting stent and 3-link cell design everolimus-eluting stent in patients with de novo true coronary bifurcation lesions: the BEGIN trial. Heart Vessels. 2019;34:1297–308.

    Article  PubMed  Google Scholar 

  55. Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, et al. Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv. 2012;5:193–201.

    Article  PubMed  Google Scholar 

  56. Prati F, Di Vito L, Biondi-Zoccai G, Occhipinti M, La Manna A, Tamburino C, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8:823–9.

    Article  PubMed  Google Scholar 

  57. James MT, Samuel SM, Manning MA, Tonelli M, Ghali WA, Faris P, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6:37–43.

    Article  PubMed  Google Scholar 

  58. Kurogi K, Ishii M, Sakamoto K, Komaki S, Marume K, Kusaka H, et al. Persistent renal dysfunction in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. J Am Heart Assoc. 2019;8:e014096.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J. 2012;76:922–7.

    Article  PubMed  Google Scholar 

  60. Kurogi K, Ishii M, Sakamoto K, Komaki S, Kusaka H, Yamamoto N, et al. Optical coherence tomography-guided percutaneous coronary intervention with low-molecular-weight dextran – effect on renal function. Circ J. 2020;84:917–25.

    Article  PubMed  Google Scholar 

  61. Kurogi K, Ishii M, Sakamoto K, Kusaka H, Yamamoto N, Takashio S, et al. Minimum-contrast percutaneous coronary intervention guided by optical coherence tomography using low–molecular weight dextran. JACC Cardiovasc Interv. 2020;13:1270–2.

    Article  PubMed  Google Scholar 

  62. Kurogi K, Ishii M, Sakamoto K, Tusjita K. Observing an aorto-ostial lesion using TELESCOPE® in optical coherence tomography-guided percutaneous coronary intervention. PCROnline. 2020. https://www.pcronline.com/Cases-resources-images/Images-interventional-cardiology/EuroIntervention-images/Aorto-ostial-lesion-observation-by-OCT.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Tsujita.

Ethics declarations

Conflict of interest

Dr. Tsujita has received remuneration for lecture from Amgen Astellas BioPharma K.K., Kowa Pharmaceutical Co. Ltd., Daiichi Sankyo Co., Ltd., Takeda Pharmaceutical Co., Ltd., Bayer Yakuhin, Ltd., Pfizer Japan Inc., Bristol-Myers K.K., MSD K.K.; has received trust research/joint research funds from Bristol-Myers K.K., Sugi Bee Garden Co., Ltd., Kowa Pharmaceutical Co. Ltd.; and has received scholarship fund from ITI Co., Ltd., Abbott Medical Japan L.L.C, Abbott Vascular Japan Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Cardinal Health Japan, Kaneka Medix Co., Ltd., Takeda Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma, Chugai Pharmaceutical Co., Ltd., TERUMO Co., Ltd., NIPRO CORPORATION, NIHON KOHDEN CORPORATION, Medtronic Japan Co., Ltd., Japan Lifeline Co., Ltd., Fides-One, Inc., Fukuda Denshi Co., Ltd., and Boston Scientific Japan K.K. All the other authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurogi, K., Ishii, M., Yamamoto, N. et al. Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications. Cardiovasc Interv and Ther 36, 169–177 (2021). https://doi.org/10.1007/s12928-020-00745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-020-00745-4

Keywords

Navigation