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Abstract. Spatially explicit quantification on design storms are essential for flood risk assessment and planning. Since the 

limited temporal data availability from weather radar data, design storms are usually estimated on the basis of rainfall records 

of a few precipitation stations having a substantially long time coverage. To achieve a regional picture these station based 

estimates are spatially interpolated, incorporating a large source of uncertainty due to the typical low station density, in 

particular for short event durations.  10 

In this study we present a method to estimate spatially explicit design storms with a return period of up to 100 years on the 

basis of statistically extended weather radar precipitation estimates based on the ideas of regional frequency analyses and 

subsequent bias correction. Associated uncertainties are quantified using an ensemble-sampling approach and event-based 

bootstrapping. 

With the resulting dataset, we compile spatially explicit design storms for various return periods and event durations for the 15 

federal state of Baden Württemberg, Germany. We compare our findings with two reference datasets based on interpolated 

station estimates. We find that the transition in the spatial patterns from short duration (15 minute) to long duration (2 days) 

events seems to be much more realistic in the weather radar based design storm product. However, the absolute magnitude of 

the design storms, although bias-corrected, is still generally lower in the weather radar product, which should be addressed in 

future studies in more detail. 20 

1 Introduction 

In the light of flood risk preparedness preparation and climate change adaptation planning there is a rising need for reliable 

information on the regional to local impacts of urban and sub-urban storm flows (e.g. European Flood Directive: EC, 2007 or 

‘Guidelines of heavy rainfall management for the federal state of Baden Württemberg’: LUBW, 2016 - in German only). This 

information is usually provided based on data from hydrological and hydraulic modelling chains, which themselves need 25 

spatially homogenized information on the magnitude of design storms for various duration and frequencies as input data. 

In order to be able to provide reliable information, design rainfall estimates have to be based on sufficiently long time-series 

of rainfall observations from climate stations at a high temporal resolution (e.g. Charras-Garrido and Lezaud, 2013). Especially 

for the estimates of rare events (Tr>=100a) this restricts the analyses usually to a rather limited number of precipitation stations, 

hence requiring substantial spatial interpolation efforts in order to regionalize the information. A further issue when dealing 30 
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with station data with very long time-series is non-stationarity of the data which requires an adaptation of the extreme value 

analyses (e.g. temporally dependent location parameters of the Generalized Extreme Value distribution, Cheng et al., 2014) 

Apart from station data, however, temporally and spatially homogenized and station-adjusted precipitation data from weather 

radar become more and more available and have been used in the analysis of design storms (e.g. Overeem et al., 2009; 

Haberlandt and Berndt, 2016; Panziera et al., 2016; Pöschmann et al., 2021). The main advantage of using weather radar data 35 

is the provision of a spatially complete picture of storm events on various temporal and spatial scales, as many short-term and 

small scale storm events are not captured by the typical network of precipitation gauges (Lengfeld et al., 2020). Hence, design 

storm estimates based on weather radar data are supposed to provide a more reliable spatial picture than interpolated station 

data.  

The biggest drawback of this approach, however, is the lack of long-term weather radar records as temporally consistent data 40 

is primarily available only for the recent two decades (e.g. Saltikoff et al., 2019), hence not suitable (or only when accepting 

larger uncertainties) for estimating design storms with return periods larger than 30 to 40 years.  

In order to overcome short records (or ungauged sites), regional frequency analysis is often used for rainfall as well as for 

discharge records. Based on the so called region of influence (ROI) approach (Burn, 1990), the records of a target station are 

extended by pooling data from neighbouring stations located within a target-station specific region. While numerous 45 

applications of regional frequency analysis are reported for station data (e.g. Gaál and Kyselý, 2009; Requena et al., 2019), 

fewer examples are available for the extension of times series from weather radar. Goudenhoofdt et al. (2017) based a regional 

frequency analysis over Belgium on pooled radar data time-series with a sampling scheme considering radar cells in a radius 

of 10 km around the target cell for the extension of the precipitation records. While in general the approach lead to promising 

results, the radial sampling scheme, however, lead to some artificial circular pattern in the final product and does account for 50 

the idea of similar regions based on distance alone.  

A slightly different approach to conduct a regional frequency analysis is the spatial bootstrapping method (e.g. Uboldi et al., 

2014). For a specific station/cell a large number of samples are established by the repeated sampling of independent events 

from surrounding stations/cells. This approach was recently applied to 11 years of radar data (spatial resolution of 4 km x 4 

km) over the state of Louisiana, US (Eldardiry and Habib, 2020). Also in this study, the cell specific ROI, out of which the 55 

samples were pooled, was defined by the distance to the target cell. For each cell they set up 500 samples with a sample size 

of 11 events (in order to equal the actual number of years), each. They found that the method can provide a robust representation 

of extreme precipitation which is less affected by single outlier events than a non-regional pixel based approach. However, 

when compared with station based data, the re-sampled weather radar data has a tendency to underestimate the station records. 

Reasons for this could be on one hand that the definition of the target cell specific ROI based on the distance only might not 60 

sufficient, but other factors (e.g. elevation, climate) as it is usually done with station data (e.g. Uboldi et al., 2014) should be 

incorporated as well. Also the fact that each sample only considers 11 events could be a source of uncertainty. 

On the other hand, a general ‘bias’ in the weather radar when compared with stations is visible, generally increasing with 

rainfall intensity (Schleiss et al., 2020) as the radar precipitation is an indirect product (derived from reflectivity) integrated 
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over a larger area. A common approach to correct for such structural biases is the so called bias correction approach (see e.g. 65 

Maraun, 2016 for a review on bias correction) developed in climate impact research, but also already applied to weather radar 

data (Rabiei and Haberlandt, 2015). The basic idea behind bias correction is that structural biases in the data are removed while 

the specific characteristics (either spatial or temporal) are kept. 

A combination of regional frequency analysis and bias correction could be a promising approach in order to generate a robust 

radar based dataset for the spatially explicit estimation of design storm events. In our study we therefore apply a ROI based 70 

approach to extend a climatological record of 19 years of spatially and temporally homogenized weather radar data in 

combination with a station based bias correction. We focus our study regionally on the federal state of Baden Württemberg 

(BaWu), Germany as we have two station based, regionally interpolated design storm products available for this region that 

can be used to evaluate the newly generated regional design storm product based on weather radar data. Furthermore, BaWu 

is topographically quite complex, which leads to a spatially rather inhomogeneous rainfall patterns (see Fig. 1a and Fig. 1c). 75 

2 Data and Methods 

2.1 Radar-based rainfall estimates 

We base our work on the spatially and temporally homogenized climatological precipitation radar product of the German 

Weather Service referenced as RADKLIM (Winterrath et al., 2017) that is available as quasi gauge-adjusted five-minutes 

precipitation product (RADKLIM_YW_V2017.002; Winterrath et al., 2018). This data consists of post-processed (artefact 80 

and attenuation correction) and station adjusted (but only hourly values) precipitation rates on a 1km x 1km grid for the time 

period from 2001 to 2019. Since we are mainly interested in short to medium range storm events that are mainly of convective 

nature, we only use data for the (summer) months from April to October, representing the main season for these kind of storm 

events (e.g. Ruiz-Villanueva et al, 2012; Haacke and Paton, 2021). Furthermore, the increased uncertainty connected to the 

measurement of solid precipitation can be avoided when focussing on the summer season only. The original five-minute data 85 

is reassembled for different durations (e.g. 15, 60, 360 & 1440 minutes) via running sums and analysed separately for each 

event duration.  

2.2 Station based reference data 

For an independent reference we use two spatially interpolated design storm estimates based on precipitation station data. Both 

datasets are frequently used by practitioners for the design and development of flood retention measures in Germany. The first 90 

one is the KOSTRA dataset (KOSTRA-DWD-2010R, Junghänel et al., 2017) which provides design rainfall estimates on a 

spatial scale of 5km x 5km for the whole of Germany for various return periods and event durations. The KOSTRA dataset 

was compiled by the German Weather Service and can be seen as the national standard with respect to design rainfall in 

Germany.  
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However, due to the limited spatial resolution of KOSTRA an additional dataset (available on 1km x 1km) has been compiled 95 

for the federal state of Baden Württemberg (subsequently referred to as BW-Stat; Steinbrich et al., 2016 - in German only). 

This dataset forms the basis for a coordinated effort of the state’s environmental agency for the management of heavy rainfall 

and resulting pluvial floods in municipalities (LUBW, 2016; in German only). Like KOSTRA, this dataset is also based on 

station-specific design rainfall estimates which were spatially interpolated using a multi-linear regression approach. The finer 

resolution of BW-Stat when compared to KOSTRA could be achieved by incorporating data from more stations (however 100 

often with shorter time series) and other precipitation networks than in KOSTRA into the analyses. In order to set up a sound 

data base at each of the locations a ROI based events pooling approach (similar to the one described in this paper) was used. 

Also BW-Stat design storms are available for different return periods and event durations. In order to allow a direct comparison 

with the radar based design storm estimates, the BW-Stat data was spatially re-interpolated (based on the original multi-linear 

regression based interpolation process and identical station data) to the radar grid. 105 

2.3 Regional sub-sampling 

We assume a storm event with a return period of 100 years to represent the upper end of our analysis. Therefore, we aim for a 

target length of the underlying time-series of about 100 years of rainfall data to meet the requirements for a profound extreme 

value analysis (EVA) with return periods up to 100 years. Given the 19 years of RADKLIM data already available, we need 

to pool for each radar cell (cell of interest, COI) the data from four additional radar cells to statistically extent the RADKLIM 110 

data series to a respective length (95 years).  

Based on the ROI concept we defined for each radar cell a specific sampling area (with underlying sampling probabilities) that 

has to fulfil two criteria. On the one hand, the specific sampling area has to be located in close proximity (in terms of horizontal 

as well as vertical distance) to the COI in order to be spatially representative. On the other hand, we also want to make sure 

that we sample additional rainfall events or intensities not necessarily present in the COI, so we have also to make sure that 115 

the sampling happens not too close to the COI.  

The underlying sampling probabilities of the specific sampling area are defined in a two-step procedure as depicted in Fig. 1b. 

First, a radial area around the COI is defined based on the distance to the radar cell of interest (Fig. 1, panel bI). Probabilities 

for this radial area are assigned based on a normal distribution with parameters mean and standard deviation of 9 km (cells) 

and 6 km (cells), respectively. The maximum sampling radius was set to 25 km (cells). These numbers are chosen in order to 120 

reflect the typical size of a convective cell in Germany (about 40 km for hourly events, Lengfeld et al., 2019) but still keep the 

spatial representation of the sampling region for the COI. 

Second, spatial sampling probabilities are additionally defined by the respective altitude of the COI (Fig. 1, panel bII). Again, 

the probabilities are based on a normal distribution with the altitude of the COI as mean and a standard deviation of 50m. Note 

that for the few radar cells in BaWu with an altitude above 1150 m (70 cells, see also Fig. 1a) the mean of the normal 125 

distribution was set to 1150m (instead of the altitude of the COI), in order to increase the number of possible sampling cells 

for these locations. Elevation ranges from 90 m to 1495 m in the study region (Fig. 1a). 
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In a final step, both spatial sampling probabilities are normalized with the respective maximum probability, added together 

and again normalized by the maximum to generate the final spatial probability distribution for the sampling (Fig. 1, panel bIII). 

Random sampling based on the underlying probabilities is now conducted out of all cells with a probability above a certain 130 

threshold (p>=0.8). In order to prevent that neighbouring cells are sampled, the sampling probabilities of the cells in a radius 

of 4 km (cells) of the cell are reduced below the threshold value after each sample is drawn (Fig. 1, panel bIV).  

Although the sampling is based on a cell specific spatial distribution of probabilities the random character of the sampling 

allows to sample different cells for a specific cell of interest in case the sampling is repeated. Hence it is possible to follow an 

ensemble approach for the sampling in order to quantify the sampling uncertainty. For this purpose, the sampling is repeated 135 

10 times. However, to minimize the effect of duplicated samples (cells) in the individual ensemble members, only the five 

members with the lowest number of cell duplicates are selected. 

 

2.4 Event definition and extreme value analysis 

After the sampling process is completed, for each radar cell a data series of 95 (5 x 19) artificial years is available for multiple 140 

durations and each of the five ensemble members. Each radar cell is hereby treated as an individual station. Although a time 

series of 95 years was generated, it has to be kept in mind, that it is actually based on 19 years of weather radar rainfall 

estimates, only. Hence, the concept of partial series (value over threshold concept) instead of annual series is applied to identify 

the events for the EVA. The threshold value varies from cell to cell and is estimated to be the value that has a return period of 

1 year using the approach of plotting positions Tk for each element k of the partial series (with k =1 representing the maximum 145 

event for the specific cell, duration and ensemble member within the 95 artificial years). 

 

)()4.02.0( LMkLTk               (EQ 1) 

 

with M as the length of the time series in years (95 years in our case). L is the total number of independent events which is in 150 

our case estimated by e (Euler‘s number) times the number of years equals 258 events . This approach is identical to the method 

applied for the generation of the BW-Stat dataset (hence allows for direct comparison) and follows the guidelines for EVA 

given by the German Association for Water, Wastewater and Waste (DWA, 2012). Temporal independence of the individual 

events is ensured if the events are at least 48 hours apart, starting from the maximum event. This time spacing is applied for 

all durations, although for short duration events this might be a rather conservative definition of independence. 155 

 

For all events with rainfall rates equal to or above the threshold value, the Generalized Pareto distribution (GPD, see e.g. de 

Zea Bermudez and Kotz, 2010 for details on the parameters of the GPD) is fitted (individually for each event duration, radar 

cell and ensemble member) in order to be able to calculate precipitation rates for various return periods. The three (location, 
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scale and shape) parameters describing the GPD are estimated using the L-Moment parameter estimation method. The 160 

application of the GPD and the fitting process is similar to the approach used for the generation of the BW-Stat dataset and 

enables the direct comparison between our dataset and the BW-Stat estimates.  

 

In order to estimate the uncertainty of the parameter estimation a bootstrapping method is applied for each duration, cell and 

ensemble member to generate 1000 random samples of the events identified for the extreme value statistics. This results in a 165 

final total ensemble of 5000 parameter estimates for each cell and duration, hence allowing to explicitly assign confidence 

intervals to the estimated design storms. The chosen approach allows to eventually separate between the uncertainty range 

resulting from the different pooling (spanned in-between the five ensemble members) from the full range. 

2.5 Bias-correction of RADKLIM Data 

As introduced previously rainfall estimates from weather radar are known to frequently underestimate the magnitude of 170 

extreme rainfall events when compared to station data. This is usually triggered by the fact that radar measurements represent 

an integrated measurement of 1km x 1km while station data is a point measurement, but also other effects like an 

underestimation of high-intensity rainfall estimates using fixed Z-R relations for typical convective and stratiform events may 

play a role (e.g. Thorndahl et al., 2014). In order to compensate for such structural biases, we decided to match the magnitude 

of 1yr design storms (which can be derived in a rather robust manner) of the BW-Stat dataset and the radar data (and hence 175 

also improve the comparability of the two datasets). To achieve this match of datasets, a quantile mapping approach (e.g. 

Cannon et al., 2015) was applied. This approach has the advantage that it corrects bias for the whole probability distribution 

(either temporal or spatial) to match the distribution of the target dataset but keeps the respective spatial or temporal pattern of 

the data. 

 180 

For each station within the analysis region we select the closest four radar cells. QM correction is applied to the distribution 

of the location parameter (which can be taken as a proxy for a 1yr event) of the GPD of all stations and their corresponding 

cells for each duration separately. The resulting correction function is then applied to the frequency distribution of the location 

parameter of the full radar data set (again separately for each duration). All design storms are then calculated based on the 

corrected location parameter, however the shape and scale parameters of the GPD have not been corrected in order to keep the 185 

consistency within the data.  The design storm estimates form bias-corrected weather radar based GPD parameters is referred 

to as RAD-BC whereas the non-bias-corrected version is named RAD.  
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3. Results  

3.1 Sampling statistics 190 

In the perfect case each radar cell would exactly occur five times (once as COI, four times as additionally selected cells) in 

each member of the final dataset. However, as we do not prescribe how often a cell is drawn, the relative contribution of a 

single radar cell to the data set deviates from the optimal case (Fig. 2 a). Overall about 90% of the radar cells contribute their 

events between 1 and 7 times to the final data set, with a maximum at 4 repetitions. Cells that occur more than 10 times are 

extremely rare and can be neglected, leading to the conclusion that the final dataset is not biased towards single cells. With 195 

respect to the regional characteristics of the sampling, about 90% of the sampled cells have a distance to the COI in the range 

of 5km to 14km with a maximum occurrence at a distance of about 8km (Fig. 2b). The inter-ensemble variability in the 

sampling statistics is rather low (depicted by the small error bars).  

The spatial distribution of the effective ensemble size is depicted in Fig. 2c. Here we basically show how often for a COI the 

identical cell has been sampled in all of the five ensembles. Although we select our five ensemble members in a way that the 200 

number of duplicates is minimized (in an optimal case only the COI would be duplicated), duplicates partly still occur and 

hence reduce the effective ensemble size. So in case only the COI is duplicated in all members, we set the effective ensemble 

size to five. If two cells (e.g. COI and one of the four sampled cells) is duplicated the effective ensemble size is set to four, 

etc. While for the most parts of BaWu the effective ensemble size is five it is slightly reduced along the main slopes of the 

mountainous Black Forest (located in the west of BaWu) and Swabian Jura (located more the centre of BaWu, see also Fig. 1a 205 

for regional specification) regions. But only 13 out of about 41000 cells have 4 duplicated cells in the ensembles and no cell 

with all 5 ensemble members having the identical sub-selection of neighbouring cells occurs. Furthermore, it has to be kept in 

mind that even if cells are duplicated in different ensembles it doesn’t necessarily mean that the EVA is based on the identical 

events, since the selection of the events is done subsequently to the cell sampling. Given the fact that the first event included 

in the EVA is the event that has the maximum rain rate per duration out of all of the five contributing cells and further having 210 

the prerequisite that two events have to be at least 48 hours apart to be considered in the EVA it is very likely that (depending 

on the previously identified event) the same cell combination contributes different events to the final EVA in the different 

ensembles.        

3.2 Bias correction 

The impact of the quantile based correction of the location parameter is depicted in the form of cumulative frequency 215 

distributions (CFD) in Fig. 3. While the uncorrected radar data substantially underestimates the 1yr design storms, the bias 

corrected version overlaps (by purpose) almost perfectly to the station data when only the grid cells representing station points 

are included (upper row). Considering all of BaWu the comparison between interpolated station data and bias corrected radar 

data leads to slightly larger differences (bottom row) also partly resulting from the assumptions behind the spatial interpolation 

of the station data. It has to be noted that both, BW-Stat and RAD-BC estimates, still show substantially lower rain rates for 220 
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the 1yr design storms than the KOSTRA reference dataset, for most parts of the distribution. The overestimation of extremes 

in the case of lower time steps can attributed to the lower spatial distribution of KOSTRA. Linked to this is also the substantially 

lower variability of KOSTRA, when compared with the other two datasets.  

What should be kept in mind is the fact, that the applied bias correction is not having the same effect for longer return periods. 

Correcting 1yr design storms only basically means that a certain rain amount is added to all events included in the EVA, hence, 225 

the relative contribution of the bias correction decreases for less-frequent design storms (see the differences between RAD and 

RAD-BC in Fig. 5).  

3.3 Comparison of design storms 

The spatial patterns of a 100yr design storm for four different selected event durations (15, 60, 360 and 1440 minutes) for the 

two station based reference datasets (KOSTRA, BW-Stat) as well as the for the bias-corrected and re-sampled RADKLIM 230 

dataset (RAD-BC) are depicted in Fig. 4. Additionally, the absolute difference between BW-Stat and RAD-BC datasets is 

depicted. Note that the RAD-BC dataset represents the ensemble mean of the five individual sample products and that the data 

is spatially smoothed with a 3 by 3 cell filter to avoid single outliers. 

In the KOSTRA dataset orographic induced patterns with elevated storm intensities along the Black Forest mountains and the 

Swabian Jura as well as the Alpine foothills (see Fig. 1a for regional specification) in the far south east can be seen for short 235 

and long duration events. This pattern can be expected since the z-coordinate was incorporated (although with different weights 

for the different durations) in the interpolation of the station data (Junghänel et al., 2017): The 360 minute design storm in 

KOSTRA is actually interpolated from the 60 min and 24h (not shown) design storms. The Black Forest region is also 

characterized by high-intensity design storms in the BW-Stat dataset for both, short and long duration events. However, 

especially for events with longer duration the dataset shows very dominant, high-intensity design storms in a region located 240 

between the Lake of Constance and the Black Forest, usually known to represent rather a rain shadow area due to fronts moving 

in from the west (see Fig. 1c).  

 

The spatial patterns in the RAD-BC dataset differ quite substantially from the patterns of the two station based reference 

datasets and also shows a distinct pattern change between short and long-duration events. While the spatial patterns of the 15 245 

and 60 minute 100yr design storms show no relation to the orography or orographically induced rainfall patterns (but a slight 

north-south gradient) it changes in the case of the 1440 minute 100yr design storm events to a picture very similar to the April 

to October mean rainfall distribution. This can also be proofed with a spatial correlation analysis with the mean rainfall 

estimates from REGNIE resulting in an increase in the correlation coefficient from r=0.25 (15 minute events) to r=0.75 (1440 

minute events). In the case of BC-Stat r remains below 0.6. Actually the spatial pattern of RAD-BC design storms is much 250 

more in line with what is expected from the underlying processes (e.g. pure convection triggered, small scale and short duration 

event versus more organized larger scale frontal systems for longer duration events (Lengfeld et al., 2019; Kaiser et al., 2021).  
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With respect to the absolute values, the direct comparison of BW-Stat and RAD-BC design storm intensities reveal that there 

are regions with substantially larger intensities in the RAD-BC dataset (e.g. especially in the far south east for the 1440 minute 

events) due to the difference in the spatial patterns. However, when integrated over the whole study region it becomes clear 255 

that although the radar dataset was bias-corrected for the 1yr design storm events, it still shows lower rainfall magnitudes for 

20yr and 100yr design storms than the two station-based reference datasets. 

In Fig. 5 we depict the CFD of the different datasets for four different durations and two (20yr and 100yr) return periods. We 

additionally included the non-bias-corrected (but spatially resampled) radar dataset (RAD; green line) in the figure to illustrate 

the effect of the initial bias correction. Additionally, the respective confidence interval for the RAD-BC dataset (see section 260 

on uncertainty estimation below) is included. Apart from the very high and low percentiles, the ensemble mean of the RAD-

BC storm events is about 5 to 10mm lower than the respective rain rate of BW-Stat. Nevertheless, the uncertainty range 

spanned within the two station based reference datasets is quite large itself. While there are cases where the KOSTRA dataset 

lies within the confidence interval of the RAD-BC dataset (e.g. 100yr design storm with duration of 15 min), the difference to 

KOSTRA is sometimes even larger than to BW-Stat (e.g. 20yr design storm with duration of 360 min). 265 

3.4 Uncertainty estimate        

In order to be able to quantify the uncertainties for the newly developed RAD-BC dataset we conducted a twofold uncertainty 

analysis based on an ensemble based cell-sampling approach and classical bootstrapping   for the identification of parameter 

uncertainty. The confidence interval in Fig. 5 is defined by the 10th and 90th percentile of the large data sample generated by 

1000 bootstraps runs for each of the 5 ensemble members (so basically combining both sources of uncertainty). The confidence 270 

band of the CFD spans about 5mm in the case of 20yr design storms and about 10mm in the 100yr case. The range of the five 

ensemble members only (without bootstrapping) is defined by the stippled line and accounts already for a large amount of the 

total uncertainty band demonstrating the importance of the ensemble based sampling approach. 

 

The spatial patterns of the 10th and 90th percentile are rather similar to the patterns of the ensemble mean (see Fig. 6), and the 275 

uncertainty range of the respective rain rate is for most regions between 15 and 20% in in the case of 60 minute events and 

between 10 to 15% in the case of 1440 minute events, with relatively larger ranges in regions with lower values for the mean 

storm intensity. However, there are certain spots (e.g. the northern parts of the Black Forest in the case of a 100yr 1440minute 

design storm - framed with a dashed square in Fig. 6 - or various smaller regions in both examples) that have a slightly larger 

uncertainty range, although the mean storm intensities are large as well. In order to reveal the uncertainty contribution resulting 280 

from the ensemble sampling we highlighted regions with a large (> 75% of the range) contribution of the sampling uncertainty. 

Generally, the contribution of the sampling uncertainty is larger in regions with a lower overall uncertainty range. However, 

there are various spots with relatively larger uncertainty that are dominated by the sub-sampling uncertainty. The previously 

mentioned enhanced uncertainty in the northern Black Forest case seems to be substantially influenced by sampling uncertainty 
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in its eastern parts, whereas the uncertain parameter fitting dominates in the central and western parts, indicating a rather 285 

inhomogeneous pool of heavy rainfall events in these regions. 

4.  Discussion 

The major benefit of the RAD-BC dataset is certainly the possibility to derive spatially homogenized heavy rainfall estimates 

also for less frequent (up to 100 yr return period) events. A comparison with the station based spatially interpolated reference 

products revealed that the spatial patterns of the design storm events with various durations fit much better to the theoretically 290 

expected spatial patterns (random pattern for short duration events versus large-scale, orography oriented patterns for longer 

duration rain events) than the interpolated station products. However, the tendency to underestimate the magnitude of design 

storms especially for less frequent events in comparison to the reference datasets is something which should be examined in 

further detail. 

One has to keep in mind, however, that a direct one to one comparison is only possible with the BW-Stat data since the 295 

KOSTRA data has on the one hand a much lower resolution and is based on a different set of rainfall stations. On the other 

hand, KOSTRA uses a different EVA approach based on a two parameter GEV distribution (Junghänel et al., 2017).  

  

When comparing the non-bias-corrected (scale and shape) parameters of the GPD of BW-Stat and of a single member of RAD-

BC (Fig. 7) it can be seen that for the short durations (15 and 60 minute events) the scale parameter is lower in the RAD-BC 300 

data. For the long (1440 min) events, however, the deviations in the magnitude of the design storms seem to result mainly 

from the shape factor which is lower in RAD-BC. The intermediate 360 minute events are affected by both effects. This finding 

is also true when looking at various topographic sub-regions and other ensemble members of the RAD-BC dataset.  

The lower values for the scale/shape parameters of RAD-BC can partly be attributed to the fact, that for high rainfall intensities 

radar data is known to underestimate rainfall amounts due to the reflexivity bounds (e.g. Schleiss et al., 2020). This is only 305 

partly corrected for by the applied bias correction of the location parameter as it is an additive correction which corrects less 

frequent events relatively less than the more frequent events. On the other hand, a multiplicative correction would disrupt the 

homogeneity of the sampled events of the radar data. It is also questionable if a correction factor derived from the correction 

of 1yr events can be applied to events with a much lower frequency. Further it has to be kept in mind that the BW-Stat data 

itself is an indirect product with events pooled from surrounding stations. While the location parameter still can be seen as a 310 

rather robust, it is questionable if the derived scale and shape parameters could be used with the same reliability for the bias 

correction of the radar data. 

A promising way to proceed could be to only use a small subset of stations that have a reasonable long record to develop a 

frequency and duration specific correction function which could then be regionally applied to the radar data. However, for 

BaWu there are only two stations with high temporal precipitation records available with a data series length of more than 50 315 

years (Steinbrich et al., 2016) proposing a major challenge for this approach. Another possible approach would be to use a 
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weather radar product that is compiled at a higher spatial resolution. This could have the positive aspects that the difference 

between point versus area measurements become smaller. However, a real benefit would only be achieved if the deviations 

between in rainfall estimates of weather radar and station data are not increasing with rainfall intensities, which basically calls 

for a non-static application of the Z-R relation in the weather radar product.          320 

5 Conclusions  

We present an ROI based approach to prolongate a 19yr climatological weather radar dataset of rainfall estimates in order to 

enhance its usability for the development of region specific design storm events. The established method has various positive 

aspects. The main improvement is the development of a spatially homogeneous dataset that allows for the calculation of rare 

extreme events that is not dependent on spatial interpolation methods that is often the main error source when building a 325 

regional dataset based on station data. Moreover, the chosen sampling approach allows on the one hand to control the sampling 

region based on physical aspects. It further prevents that artificial structures previously reported in literature (e.g. development 

of circle structure, Goudenhoofdt et al., 2017) are dominant in the final dataset. Due to the combination of an ensemble-based 

sampling approach and a bootstrapping based parameter estimation an explicit designation of associated uncertainty ranges is 

possible which is a major added value for the application by practitioners. 330 

Nevertheless, the current version of the data still has some shortcomings that need to be addressed in future. While the applied 

bias correction approach substantially improved the outcome, the deviation to the two existing station based reference datasets 

in the case of the less frequent events is still something that has to be clarified in the near future. In order to improve the 

compatibility with the KOSTRA dataset it might be worthwhile to apply the KOSTRA EVA to the resampled event database 

which underlies RAD-BC. Furthermore, the previously proposed training of the RAD-BC dataset on some high-quality long-335 

term temporally highly resolved station data could be a way forward to enhance the credibility of the RAD-BC dataset.  

Author contributions 

AH and MW jointly designed the experiment. All data analyses have been conducted by AH. The interpretation of the results 

as well as the drafting of the manuscript was conducted jointly by AH and MW. 

Acknowledgements 340 

This work was conducted within the research activities on heavy rainfall at the Chair of Hydrology, University of Freiburg, 

Funding for these research activities are provided by the State Office for the Environment, Measurements and Nature 

Conservation of the Federal State of Baden-Württemberg (LUBW) as well as the Regierungspräsidium (governing council) 

Stuttgart. 

https://doi.org/10.5194/hess-2021-366
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

 345 

References 

Burn, D. H.: Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, 

26, 2257-2265, 1990. 

Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do 

Methods Preserve Changes in Quantiles and Extremes?, Journal of Climate, 28, 6938-6959, 2015. 350 

Charras-Garrido, M. and Lezaud, P.: Extreme value analysis: an introduction, Journal de la Société Française de Statistique, 

154, 2013. 

Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary extreme value analysis in a changing climate, 

Climatic Change, 127, 353–369-353–369, 2014. 

de Zea Bermudez, P. and Kotz, S.: Parameter estimation of the generalized Pareto distribution—Part I, Journal of Statistical 355 

Planning and Inference, 140, 1353–1373-1353–1373, 2010. 

DWA: Starkregen in Abhängigkeit von Wiederkehrzeit und Dauer, Hennef, Germany: DWA: German Association for Water, 

Wastewater and Waste) (in German), 2012. 

EC: DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2007 on the 

assessment and management of flood risk, Official Journal of the European Union, L 288, 6.11.2007, p. 27–34, 2007. 360 

Eldardiry, H. and Habib, E.: Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly 

Precipitation Frequency Analysis, Remote Sensing, 12, 3767-3767, 2020. 

Gaál, L. and Kyselý, J.: Comparison of region-of-influence methods for estimating high quantiles of precipitation in a dense 

dataset in the Czech Republic, Hydrology and Earth System Sciences, 13, 2203-2219, 2009. 

Goudenhoofdt, E., Delobbe, L., and Willems, P.: Regional frequency analysis of extreme rainfall in Belgium based on radar 365 

estimates, Hydrology and Earth System Sciences, 21, 5385-5399, 2017. 

Haacke, N. and Paton, E. N.: Analysis of diurnal, seasonal, and annual distribution of urban sub-hourly to hourly rainfall 

extremes in Germany, Hydrology Research, 2021. 

Haberlandt, U. and Berndt, C.: The value of weather radar data for the estimation of design storms – an analysis for the 

Hannover region, PROC. IAHS, 373, 81-85, 2016. 370 

Junghänel, T., Ertel, H., and Deutschländer, T.: KOSTRA-DWD-2010R - Bericht zur Revision der koordinierten 

Starkregenregionalisierung und -auswertung des Deutschen Wetterdienstes in der Version 2010, 2017. 

Kaiser, M., Günnemann, S., and Disse, M.: Spatiotemporal analysis of heavy rain-induced flood occurrences in Germany using 

a novel event database approach, Journal of Hydrology, 595, 125985-125985, 2021. 

Lengfeld, K., Winterrath, T., Junghänel, T., Hafer, M., and Becker, A.: Characteristic spatial extent of hourly and daily 375 

precipitation events in Germany derived from 16 years of radar data, Meteorologische Zeitschrift, 28, 363-378, 2019. 

https://doi.org/10.5194/hess-2021-366
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

Lengfeld, K., Kirstetter, P.-E., Fowler, H. J., Yu, J., Becker, A., Flamig, Z., and Gourley, J.: Use of radar data for characterizing 

extreme precipitation at fine scales and short durations, Environmental Research Letter, 15, 085003-085003, 2020. 

LUBW: Leitfaden Kommunales Starkregenrisikomanagement in Baden-Württemberg, 2016. 

Maraun, D.: Bias Correcting Climate Change Simulations - a Critical Review, Current Climate Change Reports, 2, 211–220-380 

211–220, 2016. 

Overeem, A., Buishand, T. A., and Holleman, I.: Extreme rainfall analysis and estimation of depth-duration-frequency curves 

using weather radar, Water Resources Research, 45, 2009. 

Panziera, L., Gabella, M., Zanini, S., Hering, A., Germann, U., and Berne, A.: A radar-based regional extreme rainfall analysis 

to derive the thresholds for a novel automatic alert system in Switzerland, Hydrology and Earth System Sciences, 20, 2317–385 

2332-2317–2332, 2016. 

Pöschmann, J. M., Kim, D., Kronenberg, R., and Bernhofer, C.: An analysis of temporal scaling behaviour of extreme rainfall 

in Germany based on radar precipitation QPE data, Natural Hazards and Earth System Sciences, 21, 1195–1207-1195–1207, 

2021. 

Rabiei, E. and Haberlandt, U.: Applying bias correction for merging rain gauge and radar data, Journal of Hydrology, 522, 390 

544–557-544–557, 2015. 

Requena, A. I., Burn, D. H., and Coulibaly, P.: Pooled frequency analysis for intensity–duration–frequency curve estimation, 

Hydrological Processes, 33, 2080-2094, 2019. 

Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and Ehret, U.: Extreme flood response to short-duration 

convective rainfall in South-West Germany, Hydrology and Earth System Sciences, 16, 1543–1559-1543–1559, 2012. 395 

Saltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B., Becker, A., Hollmann, R., Urban, B., Heistermann, M., 

and Tassone, C.: An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential, 

Bulletin of the American Meteorological Society, 100, 1739-1752, 2019. 

Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Nielsen, J. E., Bozhinova, D., and 

Pulkkinen, S.: The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and 400 

Sweden, Hydrology and Earth System Sciences, 24, 3157–3188-3157–3188, 2020. 

Steinbrich, A., Stölzle, M., and Weiler, M.: Generierung von konsistenten Grundlagendaten zur Berechnung von 

Starkregenereignissen für eine Starkregengefahrenkartierung in Baden-Württemberg. Projektbericht an die LUBW, not 

published, 2016. 

Thorndahl, S., Nielsen, J. E., and Rasmussen, M. R.: Bias adjustment and advection interpolation of long-term high resolution 405 

radar rainfall series, Journal of Hydrology, 508, 214-226, 2014. 

Uboldi, F., Sulis, A. N., Lussana, C., Cislaghi, M., and Russo, M.: A spatial bootstrap technique for parameter estimation of 

rainfall annual maxima distribution, Hydrology and Earth System Sciences, 18, 981-995, 2014. 

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld, K., Walawender, E., Weigl, E., and Becker, A.: 

RADKLIM Version 2017.002: Reprocessed quasi gauge-adjusted radar data, 5-minute precipitation sums (YW), 2018. 410 

https://doi.org/10.5194/hess-2021-366
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Walawender, E., Weigl, E., and Becker, A.: Erstellung 

einer radargestützten Niederschlagsklimatologie, 2017. 

Figures 

 

 415 

Figure 1: (a): Topography of Baden Württemberg (BaWu) as well as location of the precipitation gauges used in the BW-Stat dataset 

and some of the geographical regions referred to in the text. (b): Probability for a specific radar cell to be sampled based on distance 

to cell of interest(bI), orography (bII) and orography and distance combined (bIII). Final sampled cells (orange) and reduced 

probabilities around the selected cells are depicted in panel bIV. All panels reflect the area indicated with a red square in the left 

part of the figure. The respective cell of interest is marked with in red. (c): April to October rainfall sum of the REGNIE 420 
(Regionalisierte Niederschlagshöhen) dataset compiled by the German Weather Service. 
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Figure 2: Distribution of the Fraction of (a) cumulative occurrences of individual radar cells in the final sample; (b) the distance of 

the sampled radar cells to the cell of interest. (c) Spatial distribution of the effective ensemble size. The distributions in a and b are 425 
for single ensemble member, while the error bars indicate the rather small variation among the five ensemble members. 

 

 

Figure 3: Cumulative frequency distributions (CFD) of the location parameter for four different event durations when comparing 

stations and radar data at the location of stations only (upper row) and integrated over the whole of BaWu (bottom row).) The dotted 430 
blue lines in the bottom row represent the range of the five ensemble members (sampling uncertainty only, no bootstrapping). 
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Figure 4: Magnitude of design storms with a return rate of 100 years for four different event durations (15, 60, 360 and 1440 minutes, 

depicted in rows) and three different datasets (KOSTRA, BW-Stat, RAD-BC, depicted in columns). Additionally, the difference 435 
between BW-Stat and RAD-BC is depicted (right column). 
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Figure 5: Cumulative frequency distributions (CFD) of the magnitude of 20yr (upper row) and 100yr (bottom row) design storms 

for four different event and different datasets. The shaded range depicts the ensemble uncertainty (10th and 90th percentile of the 440 
range from the 1000 bootstraps for each of the 5 ensemble members). The dotted blue lines in the bottom row represent the range 

of the five ensemble members (sampling uncertainty, no bootstrapping) only. Note that in the BW-Stat dataset all values below/above 

the 5th/96th percentiles are set to the respective percentile value. 

 

https://doi.org/10.5194/hess-2021-366
Preprint. Discussion started: 12 July 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

 445 

Figure 6: Ensemble mean (left column) and the 10th and 90th percentiles (two middle columns) of a 100year design storm based for 

two durations (60 minute events – upper row; 1440 minute events – bottom row). Additionally, the ensemble uncertainty range 

(difference between the 90th and the 10th percentile of the full (bootstrapping & sampling) 5000 member) is depicted (right column). 

Regions, with a large (> 75% of the range) contribution of the sampling uncertainty are marked with red. The black dashed square 

in the panel in the lower right defines the northern Black Forest region discussed in the text. 450 
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Figure 7: Cumulative frequency distributions (CFD) of the scale (upper row) and shape (bottom row) parameter for the BW-Stat 

and RAD-BC datasets, when comparing stations and radar data at the location of all stations (left column) and for three different 

subsets filtered by the altitude of the respective station locations. 455 
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