Skip to main content
Log in

Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The accuracy of DNA synthesis by DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso pol B1) at near the physiological temperature was investigated using M13-based mutational assays. Sso pol B1 showed replication fidelity similar to or higher than most viral, bacterial, and eukaryotic replicases. The fidelity of the enzyme was about three times as high at 70°C as at 55°C. Approximately two-thirds of the errors made by the enzyme were single-base substitutions, of which 58% were C → T transition. Frameshift mutations, mostly resulting from single-base deletions, accounted for 19% of the total errors. An exonuclease-deficient mutant of Sso pol B1 was three times as mutagenic as the wild-type enzyme, suggesting that the intrinsic proofreading function contributed only modestly to the fidelity of the enzyme. Kinetic assays showed that the frequencies of all possible misincorporations by an exonuclease-deficient triple-point mutant of Sso pol B1 ranged from 5.4 × 10−5 to 4.6 × 10−4. The high fidelity of this enzyme in DNA synthesis was based primarily on K m difference rather than V max difference. These properties of Sso pol B1 are consistent with the proposed role of the enzyme as a replicase in S. solfataricus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • André P, Kim A, Khrapko K, Thilly WG (1997) Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Res 7:843–852

    PubMed  Google Scholar 

  • Bae H, Kim KP, Lee J, Song J, Kil E, Kim JS, Kwon S (2009) Characterization of DNA polymerase from the hyperthermophilic archaeon Thermococcus marinus and its application to PCR. Extremophiles 13:657–667

    Article  CAS  PubMed  Google Scholar 

  • Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70:876–887

    Article  CAS  PubMed  Google Scholar 

  • Bebenek K, Kunkel TA (1995) Analyzing fidelity of DNA polymerases. Methods Enzymol 262:217–232

    Article  CAS  PubMed  Google Scholar 

  • Bebenek A, Carver GT, Dressman HK, Kadyrov FA, Haseman JK, Petrov V, Konigsberg WH, Karam JD, Drake JW (2002) Dissecting the fidelity of bacteriophage RB69 DNA polymerase: site-specific modulation of fidelity by polymerase accessory proteins. Genetics 162:1003–1018

    CAS  PubMed  Google Scholar 

  • Berkner S, Lipps G (2007) An active nonautonomous mobile element in Sulfolobus islandicus REN1H1. J Bacteriol 189:2145–2149

    Article  CAS  PubMed  Google Scholar 

  • Berkner S, Lipps G (2008) Mutation and reversion frequencies of different Sulfolobus species and strains. Extremophiles 12:263–270

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Yu H, McEntee K, Kunkel TA, Goodman MF (1995) Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem 270:15327–15335

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Song J, Nam K, Lee J, Bae H, Kim G, Sun Y, Kwon ST (2008) Unique substrate spectrum and PCR application of Nanoarchaeum equitans family B DNA polymerase. App Environ Microbiol 74:6563–6569

    Article  CAS  Google Scholar 

  • Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    Article  CAS  PubMed  Google Scholar 

  • Dawson JM, Heatlie PL (1984) Lowry method of protein quantification: evidence for photosensitivity. Anal Biochem 140:391–393

    Article  CAS  PubMed  Google Scholar 

  • De Felice M, Sensen CW, Charlebois RL, Rossi M, Pisani FM (1999) Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. J Mol Biol 291:47–57

    Article  PubMed  Google Scholar 

  • De Felice M, Medagli B, Esposito L, De Falco M, Pucci B, Rossi M, Gruz P, Nohmi T, Pisani FM (2007) Biochemical evidence of a physical interaction between Sulfolobus solfataricus B-family and Y-family DNA polymerases. Extremophiles 11:277–282

    Article  PubMed  Google Scholar 

  • Dietrich J, Schmitt P, Zeiger M, Preve B, Rolland JL, Chaabihi H, Gueguen Y (2002) PCR performance of the highly thermostable proof-reading B-type DNA polymerase from Pyrococcus abyssi. FEMS Microbiol Lett 217:89–94

    Article  CAS  PubMed  Google Scholar 

  • Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11:275–282

    Article  CAS  PubMed  Google Scholar 

  • Eckert KA, Kunkel TA (1993) Effect of reaction pH on the fidelity and processivity of exonuclease-deficient Klenow polymerase. J Biol Chem 268:13462–13471

    CAS  PubMed  Google Scholar 

  • Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280:29980–29987

    Article  CAS  PubMed  Google Scholar 

  • Frederico LA, Kunkel TA, Shaw BR (1993) Cytosine deamination in mismatched base pairs. Biochemistry 32:6523–6530

    Article  CAS  PubMed  Google Scholar 

  • Grabowski B, Kelman Z (2003) Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 57:487–516

    Article  CAS  PubMed  Google Scholar 

  • Griffiths K, Nayak S, Park K, Mandelman D, Modrell B, Lee J, Ng B, Gibbs M, Bergquist P (2007) New high fidelity polymerases from Thermococcus species. Protein Expr Purif 52:19–30

    Article  CAS  PubMed  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    Article  CAS  PubMed  Google Scholar 

  • Gruz P, Shimizu M, Pisani FM, De Felice M, Kanke Y, Nohmi T (2003) Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus. Nucleic Acids Res 31:4024–4030

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lee H, Bae S, Jeon J, Lim J, Cho Y, Nam K, Kang S, Kim S, Kwon ST (2007) Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J Microbiol Biotechnol 17:1090–1097

    CAS  PubMed  Google Scholar 

  • Kong H, Kucera RB, Jack WE (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 268:1965–1975

    CAS  PubMed  Google Scholar 

  • Kool ET (2002) Active site tightness and substrate fit in DNA replication. Annu Rev Biochem 71:191–219

    Article  CAS  PubMed  Google Scholar 

  • Kroutil LC, Register K, Bebenek K, Kunkel TA (1996) Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry 35:1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Kroutil LC, Frey MW, Kaboord BF, Kunkel TA, Benkovic SJ (1998) Effect of accessory proteins on T4 DNA polymerase replication fidelity. J Mol Biol 278:135–146

    Article  CAS  PubMed  Google Scholar 

  • Kuchta RD, Benkovic P, Benkovic SJ (1988) Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. Biochemistry 27:6716–6725

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim YJ, Bae H, Cho SS, Lee J, Kwon S (2009) Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol. doi:10.1007/s12010-009-8658-0

  • Lou H, Duan Z, Huo X, Huang L (2004a) Modulation of hyperthermophilic DNA polymerase activity by archaeal chromatin proteins. J Biol Chem 279:127–132

    Article  CAS  PubMed  Google Scholar 

  • Lou H, Duan Z, Sun T, Huang L (2004b) Cleavage of double-stranded DNA by the intrinsic 3’-5’ exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus at high temperature. FEMS Microbiol Lett 231:111–117

    Article  CAS  PubMed  Google Scholar 

  • Mai VQ, Chen X, Hong R, Huang L (1998) Small abundant DNA binding proteins from the thermoacidophilic archaeon Sulfolobus shibatae constrain negative DNA supercoils. J Bacteriol 180:2560–2563

    CAS  PubMed  Google Scholar 

  • Marsic D, Flaman J, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775–788

    Article  CAS  PubMed  Google Scholar 

  • Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA (2000) Low fidelity DNA synthesis by human DNA polymerase-eta. Nature 404:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Korpela J, Tenkanen T, Pitkanen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase: an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19:4967–4973

    Article  CAS  PubMed  Google Scholar 

  • Petruska J, Goodman MF, Boosalis MS, Sowers LC, Cheong C, Tinoco I Jr (1988) Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 85:6252–6256

    Article  CAS  PubMed  Google Scholar 

  • Pham PT, Olson MW, McHenry CS, Schaaper RM (1998) The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem 273:23575–23584

    Article  CAS  PubMed  Google Scholar 

  • Pisani FM, De Felice M, Manco G, Rossi M (1998) Domain organization and biochemical features of Sulfolobus solfataricus DNA polymerase. Extremophiles 2:171–177

    Article  CAS  PubMed  Google Scholar 

  • Redder P, Garrett RA (2006) Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188:4198–4206

    Article  CAS  PubMed  Google Scholar 

  • Rudinger NZ, Kranaster R, Marx A (2006) Hydrophobic amino acid and single-atom substitutions increase DNA polymerase selectivity. Chem Biol 14:185–194

    Article  Google Scholar 

  • Savino C, Federici L, Johnson KA, Vallone B, Nastopoulos V, Rossi M, Pisani FM, Tsernoglou D (2004) Insights into DNA replication: the crystal structure of DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Structure 12:2001–2008

    Article  CAS  PubMed  Google Scholar 

  • Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA (2003) Unique error signature of the four-subunit yeast DNA polymerase epsilon. J Biol Chem 278:43770–43780

    Article  CAS  PubMed  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  CAS  PubMed  Google Scholar 

  • Sloane DL, Goodman MF, Echols H (1988) The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. Nucleic Acids Res 16:6465–6475

    Article  CAS  PubMed  Google Scholar 

  • Song L, Chaudhuri M, Knopf CW, Parris DS (2004) Contribution of the 3′- to 5′-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. J Biol Chem 279:18535–18543

    Article  CAS  PubMed  Google Scholar 

  • Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW, Perler FB (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9o N-7 and mutations affecting 3′–5′ exonuclease activity. Proc Natl Acad Sci USA 93:5281–5285

    Article  CAS  PubMed  Google Scholar 

  • Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T (1997) Charaterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63:4504–4510

    CAS  PubMed  Google Scholar 

  • Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013

    Article  CAS  PubMed  Google Scholar 

  • Vaisman A, Ling H, Woodgate R, Yang W (2005) Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO J 24:2957–2967

    Article  CAS  PubMed  Google Scholar 

  • Werneburg BG, Ahn J, Zhong X, Hondal RJ, Kraynov VS, Tsai MD (1996) DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity. Biochemistry 35:7041–7050

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Brown JA, Newmister SA, Suo Z (2009) Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 48:7492–7501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Thomas A. Kunkel, NIEH, NIH, for donating E. coli strains and bacteriophage M13mp2 and to Dr. Zucai Suo, Ohio State University, USA, for providing the expression vector for exonuclease-deficient triple-point mutant of Sso pol B1. This study was supported by grants from the National Natural Science Foundation of China (30730003 and 30621005); National Basic Research Program of China (2004CB719603 to L.H.) and the Chinese Academy of Sciences (KSCX2-YW-G-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Huang.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Lou, H., Guo, L. et al. Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 14, 107–117 (2010). https://doi.org/10.1007/s00792-009-0292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0292-9

Keywords

Navigation