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Abstract: Within the fast-growing field of regenerative
medicine stem-cell therapy is well established in various
hematologic and immunologic diseases and has received a
recent substantial boost from the introduction of gene
editing and gene transfer technologies. In neonates,
for example, regenerative medicine may benefit those
with congenital or acquired disease due to prematurity or
perinatal hypoxia-ischemia. We compare and contrast
the twomain approaches– autologous vs. allogeneic – and
summarize the recent advances and applications of
interventional stem-cell research in perinatally acquired
disorders such as intraventricular hemorrhage, hypoxia-
ischemia and stroke. After discussing stem-cell sources
and routes of administration, we conclude by highlighting
the key opportunities and obstacles in this exciting field.
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Introduction

Ten years ago, before any clinical trials had been donewith
stem cells in neonates, Gortner et al. reviewed the clinical
potential of regenerative medicine in neonatology [1].
There was already a wealth of preclinical studies on the
table exploiting stem cells in different neonatal diseases
and providing a robust rationale for initiating clinical
feasibility and safety trials. The fascinating field of regen-
erative medicine has since grown to the extent that we can
now take stock not only of many more preclinical studies
but also of the first completed trials of stem cells in
newborn medicine.

In contrast to current clinical strategy which is often
confined to symptomatic therapy, regenerative medicine
seeks to replace specific cells, tissues or organs damaged

by congenital defects or acquired diseases or trauma
during whole life. The replacement techniques it uses
include cell therapies, tissue engineering, medical devices
and artificial organs. In neonatology, the cell and organ
defects of interest for stem cell therapy fall into two broad
categories: on the one hand, those that are primary and
mostly congenital, and on the other those secondary to
acquired disease, whether prematurity, acute or chronic
oxygen or nutrient deficiency, severe infection or multiple
other determinants.Whereas the care concept for congenital
defects is mainly repair, that for acquired disease is more
complex and is supportive rather than curative.

Two excellent reviews have covered the latest
advances in the congenital/prenatal and acquired/post-
natal approaches used in pediatric regenerative medicine.
The prenatal review covers in-utero stem-cell therapy, gene
therapy and gene-modified cell therapies in congenital and
incurable pediatric disease, before discussing the potential
of fetal cells in postnatal treatment and artificial placenta
for ex-utero fetal therapies [2]. The postnatal review
surveys the gene-, cell- and tissue-based technologies
for reconstituting the structure and function of tissues
and organs, including the application of biocompatible
scaffolds seeded with patient-derived cells [3].

The present review of neonatal stem-cell therapy
draws on the latest results achieved in perinatal disorders
such as intraventricular hemorrhage (IVH), hypoxia-
ischemia and stroke.

Autologous stem cell approaches

Stem cells are characterized by their remarkable ability to
divide and renew themselves in an undifferentiated state
and to differentiate into many types of cells with specific
functions in response to appropriate triggers. They exist
naturally as embryonic stem cells or adult stem cells, the
latter residing lifelong in almost all tissues as neural,
mesenchymal, hematopoietic and other varieties of stem
cell. Pluripotent stem cells can be produced artificially
from almost all specialized cells by cell engineering, using
gene editing and gene transfer technologies.

Therapy that uses the patient’s own cells is termed
autologous since donor and recipient are identical. The
advantages of patient-specific cells include no rejection by
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the immune system and no risk of graft-versus-host disease.
Many umbilical cord blood (UCB) banks have been estab-
lished on the basis of these and other safety features, fueled
by the contributions of parents viewing stem-cell storage as
insurance against potential health emergencies [4].

The potential of autologous UCB-derived stem-cell
therapy led a number of perinatal centers worldwide to
establish protocols and conduct pilot trials for neonatal
disorders such as hypoxic-ischemic encephalopathy (HIE)
[5, 6] and congenital hydrocephalus [7]. Despite their
safety and considerable clinical promise, these studies
encountered major hurdles, such as problems in preparing
cells on time and in sufficient amounts to permit scalability
of the approach using the patient´s own umbilical stem
cells right after birth. A large HIE trial was stopped in
the US because of poor recruitment (ClinicalTrials.gov
identifier NCT02612155) and not surprisingly, the latest
Cochrane review of stem-cell interventions in neonatal HIE
failed to identify a single eligible randomized controlled
trial (RCT) [8]. Technological advance in boosting cell
expansion may be needed before the autologous approach
to neonatal disease returns to favor.

Allogeneic stem cell approaches

In allogeneic therapy recipient and donor are different. The
main advantage is the cell yieldwhile themain challenge is
the immune response. There are at least three ways of
countering the shortcomings of the allogeneic approach.
First, gene transfer or gene editing techniques can be used
to modify stem cells and induce already differentiated
cells to become multipotent again. Second, embryonic
stem cells offer great potential, while also raising as yet
unresolved ethical issues. Third, in many different
neonatal and adult tissues mesenchymal stem (or stromal)
cells (MSCs) [9] form an important cell population with
immunosuppressant and tissue repair properties [10].

The main neonatal sources of MSCs are UCB and
Wharton’s jelly (umbilical cord tissue [UCT]), both of which
are readily accessible and available. In adults larger
amounts of MSCs are found in bone marrow and adipose
tissue. MSCs are actually present in every tissue as part of
the microvasculature. Stem cells harvested from young
donors are not only more potent, they also exhibit greater
complexity before extensive passaging [11, 12]. The relative
availability ofMSCs, their favorable storage conditions and
the safety data now available from completed and ongoing
clinical trials combine to boost the case for MSCs as an
effective therapy in a variety of diseases, even as an off-the-
shelf medical product.

MSCs have now featured for over 20 years in clinical
and laboratory studies relating mainly to adult rather than
pediatric medicine. Way over 1,000 clinical trials have
been logged in international registries and way over
10,000 patients, mainly adults, have been treated. In
addition, over 1,000 mainly private hospitals worldwide
offer some formofMSC therapy, oftennotworth the fees that
patients pay. However, largely because of the complexity
and variety of the products involved, the FDA has so far
approved MSC therapy in only very rare instances.

Current status of mesenchymal
stem-cell research in neonates

The author performed a systematic search in August 2022
for interventional stem-cell clinical trials registered
in the world’s most comprehensive online database,
ClinicalTrials.gov, maintained by the US National Library
of Medicine. 5772 hits were retrieved for the search term
‘stem cell’ or synonyms such as ‘progenitor cell’ or ‘blast
cell’ and 486 hits for ‘stromal cell’. Most studies con-
cerned bone marrow transplantation, new conditioning
regimens and associated treatments rather than the effect
of stem or stromal cells in adults. Filtering for children
and using ‘neonate’ or synonyms such as ‘newborn’,
‘newborn baby’ or ‘newborn infant’ retrieved 78 hits for
‘stem cells’ and 19 for ‘stromal cells’.

Most of the 78 hits involved hematologic or immuno-
logic conditions such as severe combined immunodefi-
ciency, followed by broncho-pulmonary dysplasia (BPD).
Only six involved perinatal disease such as IVH, hypoxia-
ischemia and stroke. Most of the 19 hits for ‘stromal cells’
and ‘neonates’ concerned adults in acute respiratory
distress with orwithout COVID-19 (n=16) given stromal cells
from newborn donors. Just three were neonates with IVH,
stroke or BPD.

Current status of mesenchymal
stem-cell research in neonatal
neurologic disorders

Further searches using ‘mesenchymal’ instead of ‘stem
cells’ or ‘stromal cells’ retrieved no other studies involving
perinatal IVH, hypoxia-ischemia or stroke. Of the eight
studies of this perinatal triad registered at ClinicalTrials.
gov, only the following four show as completed or as

Wellmann: Stem cells neonates 727

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov


having published results. They all give ground for hope
but, as we shall see, at least one raises insuperable barriers
in terms of applicability and scalability:
(1) NCT00818220 was a delayed cord clamping RCT which

found an unaltered incidence of IVH but improved
motor function at age 2 years in the delayed cord
clamping group and discussed the possible effect of
stem cells, which is why this study showed up in the
search [13]. A recent systematic review and network
meta-analysis found delayed cord clamping to be
associated with lower mortality and morbidity in
preterm infants, including those with IVH, making
this is a readily applicable low-cost technique for
maximizing neonatal stem cell load [14].

(2) NCT02274428 was a phase 1 trial in 9 patients with
severe IVH conducted by Park WS et al. at Samsung
University in South Korea. They used intraventricular
transplantation of UCB-derived MSCs in the second
week of life [15]. The approach proved safe and
feasible. Follow-up of the 9 patients is ongoing
(NCT02673788) and the formulation of the UCB-MSC-
derived product (PNEUMOSTEM) is being investigated
in other diseases. UCB-MSC-derived products are
sourced from pooled healthy neonate donors,
posing considerable quality and regulatory issues, and
are thus expensive. Once approved, however, there are
virtually no limits on scalability, making this an
attractive business model. The intraventricular route
provides direct access to the injured region after IVH
but is more invasive than the intravenous or intranasal
routes. More clinical research is needed to settle debate
on the most advisable route of administration.

(3) NCT03635450 is a phase 1 trial in 6 patients byKurtzberg
J et al. at Duke University in North Carolina, adminis-
tering a UCT-derived allogeneic MSC product for HIE
intravenously in the first 48 h of life. The study was due
for completion in 2020 but results have yet to be pub-
lished. UCT-derived MSCs have the same scalability
potential as their UCB-derived counterparts, fueling the
hope for future off-the shelf medication. Generating
MSCs from Wharton´s jelly is a relatively low-cost tech-
nique with no burden on the donor [16]. Whether and
how tissue origin affects the therapeutic potential of
MSCs in clinical settings remains to be explored.

(4) NCT03356821 refers to a phase 1 trial in 10 patients with
perinatal arterial ischemic stroke conducted by
Benders M et al. at Utrecht University, Netherlands,
using bone marrow (BM)-derived MSCs from a single
donor given by once-only intranasal administration in
the first week of life [17]. Intranasal delivery is
intriguing in that it is both noninvasive and– at least in

animal studies – effective and had already been
proposed a decade ago [18]. Using BM-derived MSCs
from the same single donor maximizes in-study
comparability at the expense of scalability. Interest-
ingly, an observational study has used the nasal route
to administer fresh humanmilk to preterm infants with
IVH [19] and at least one phase 1 trial is currently
determining whether fresh human milk can be safely
delivered as an intranasal stem cell therapy in preterm
infants with IVH (NCT04225286).

Conclusions and outlook

Stem-cell therapy in neonates has reached the clinical
researchphase. The first phase 1 trials to post results showed
that various routes of administration were safe and feasible
using a variety of stem-cell products. However, efficacy
awaits investigation inRCTs.While a couplemore yearsmay
be needed for the latest gene editing and cell expansion
techniques to drive significant advance in autologous stem
cell therapies, allogeneic approaches using pooled UCB- or
UCT-derived MSCs have the potential for use as commercial
products somewhat sooner. Hence the question: is stem-cell
therapy in neonates anoption? Yes, itmost certainly is, right
now. Two simple and low-cost stem-cell interventions await
daily worldwide implementation. One is already evidence-
based: delayed cord clamping in every delivery, and in
preterm deliveries in particular, to maximize the stem cell
harvest. The other is exploratory but promising: intranasal
administration of the stem cells in fresh mother’s milk for
infants with a severe neurologic disorder.
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