Skip to main content
Log in

3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silica two-dimensional substrates and nanowires (NWs) forests have been successfully decorated with Au nanoparticles (NPs) through laser ablation by using a pulsed ArF excimer laser, for sensor applications. A uniform coverage of both substrate surfaces with NPs has been achieved controlling the number of laser pulses. The annealing of the as-deposited particles resulted in a uniform well-defined distribution of spherical NPs with an increased average diameter up to 25 nm. The deposited samples on silica NWs forest present a very good plasmonic resonance which resulted to be very sensitive to the changes of the environment (ethanol/water solutions with increasing concentration of ethanol) allowing the detection of changes on the second decimal digit of the refractive index, demonstrating its potentiality for further biosensing functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.M. Mayer, J.H. Hafner, Chem. Rev. 111, 3828 (2011)

    Article  Google Scholar 

  2. E.E. Bedford, J. Spadavecchia, C.M. Pradier, F.X. Gu, Macromol. Biosci. 12, 724 (2012)

    Article  Google Scholar 

  3. K. Saha, S.S. Agasti, C. Kim, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    Article  Google Scholar 

  4. X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, Nature Biotechnol. 26, 83 (2008)

    Article  Google Scholar 

  5. E. Boisselier, D. Astruc, Chem. Soc. Rev. 30, 1759 (2009)

    Article  Google Scholar 

  6. F. Frederix, J.M. Friedt, K.H. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Anal. Chem. 75, 6894 (2003)

    Article  Google Scholar 

  7. T. Okamoto, I. Yamaguchi, T. Kobayashi, Opt. Lett. 25, 372 (2000)

    Article  ADS  Google Scholar 

  8. N. Nath, A. Chilkoti, Anal. Chem. 74, 504 (2002)

    Article  Google Scholar 

  9. J. Ye, K. Bonroy, D. Nelis, F. Frederix, J. D’Haen, G. Maes, G. Borghs, Colloids Surf. 321, 313 (2008)

    Article  Google Scholar 

  10. Z.Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Angew. Chem. 41, 1153 (2002)

    Article  Google Scholar 

  11. L. Guo, C. Guonan, D.H. Kim, Anal. Chem. 82, 5147 (2010)

    Article  Google Scholar 

  12. Z. Cai, Y.J. Liu, X. Lu, J. Teng, J. Phys. Chem. C 117, 9440 (2013)

    Article  Google Scholar 

  13. A. Convertino, M. Cuscunà, F. Martelli, M.G. Manera, R. Rella, J. Phys. Chem. 118, 685 (2014)

    Google Scholar 

  14. M. Störmer, H.U. Krebs, J. Appl. Phys. 78, 7080 (1995)

    Article  ADS  Google Scholar 

  15. P. Schaaf, Laser Processing of Materials: Fundamentals, Applications and Developments (Springer, Berlin, 2010)

    Book  Google Scholar 

  16. V. Resta, C.N. Afonso, E. Piscopiello, G. van Tendeloo, Phys. Rev. B 79, 235409 (2009)

    Article  ADS  Google Scholar 

  17. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  18. A. Perrone, F. Gontad, A. Lorusso, M. Di Giulio, E. Broitman, M. Ferrario, Nucl. Instrum. Meth. A 729, 451 (2013)

    Article  ADS  Google Scholar 

  19. A. Luches, A.P. Caricato, Thin Nitride Films Deposited by Reactive Pulsed Laser Ablation, in Photo-excited Processes, Diagnostics and Applications, ed. by A. Peled (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  20. V. Resta, J. Gonzalo, C.N. Afonso, E. Piscopiello, J. García, J. Appl. Phys. 109, 094302 (2011)

    Article  ADS  Google Scholar 

  21. L.M. Kukreja, S. Verma, D.A. Pathrose, B.T. Rao, J. Phys. D Appl. Phys. 47, 034015 (2014)

    Article  ADS  Google Scholar 

  22. V. Resta, A.P. Caricato, A. Loiudice, A. Rizzo, G. Gigli, A. Taurino, M. Catalano, M. Martino, J. Nanopart. Res. 15, 2017 (2013)

    Article  Google Scholar 

  23. Ph Buffat, J.-P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  24. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  25. V. Resta, J. Siegel, J. Bonse, J. Gonzalo, C.N. Afonso, J. Appl. Phys. 100, 084311 (2006)

    Article  ADS  Google Scholar 

  26. T.C. Choy, Effective Medium Theory (Clarendon Press, Oxford, 1999)

    Google Scholar 

  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G.C. Schatz, J. Phys. Chem. B 109, 1079 (2005)

    Article  Google Scholar 

  28. J. Requejo-Isidro, R. del Coso, J. Solis, J. Gonzalo, C.N. Afonso, Appl. Phys. Lett. 86, 193104 (2005)

    Article  ADS  Google Scholar 

  29. R.A. Street, W.S. Wong, C. Paulson, Nano Lett. 9, 3494 (2009)

    Article  ADS  Google Scholar 

  30. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, K. Maeda, Opt. Express 15, 12979 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Caricato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontad, F., Caricato, A.P., Manera, M.G. et al. 3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires. Appl. Phys. A 122, 539 (2016). https://doi.org/10.1007/s00339-016-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0063-2

Keywords

Navigation