Skip to main content
Log in

2,4′:2′,4 Dianhydride of 3-keto-glucoside, a precursor to chromophores of aged, yellow cellulose, and its weak interactions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Studies of cellulose aging and yellowing that involved a 1,4-dimethyl 3-keto β-d-glucoside (compound 1) model of oxidized cellulose led to a hemi-hydrated crystal of title compound 2 (1,6-dihydroxy-3,8-bis-hydoxymethyl-5,10-dimethoxy-4,9-dioxa-tricyclo [5,3,1,1,2,6] dodecane-11,12-dione). The same compound 2 was isolated in low yield from “real-world” oxidized and aged cellulosic pulp. Formation of compound 2 implies cellulose chain cleavage and, unexpectedly, cross-linking during aging. X-ray diffraction revealed an encompassing 10-membered ring whose two carbonyl group bridges define two eight-membered rings and three six-membered rings. The central six-membered ring is antecedent to 2,5-dihydroxy-1,4-benzoquinone (compound 3), a potent and nearly ubiquitous chromophore in aged cellulose; the outer rings derive from the keto-glucosides and have 4C1 and 1C4 shapes with gt and rare tg O-6 positions. Weak trans-annular interactions between >C=O carbon and ring oxygen atoms were confirmed with Atoms-in-Molecules theory. That theory was also used to analyze a questionable cyclic hydrogen bond and bonds between adjacent O–H and carbonyl oxygens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adorjan I, Rosenau T, Potthast A, Kosma P, Mereiter K, Pauli J, Jäger C (2004) Crystal and molecular structure of methyl 4-o-methyl-β-d-ribo-hex-3-ulopyranoside. Carbohydr Res 339:795–799

    Article  CAS  Google Scholar 

  • Adorjan I, Potthast A, Rosenau T, Sixta H, Kosma P (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 1: studies on model compounds and pulps. Cellulose 12:51–57

    Article  CAS  Google Scholar 

  • Ahn K, Henniges U, Banik G, Potthast A (2012) Is cellulose degradation due to β-elimination processes a threat in mass deacidification of library books? Cellulose 19:1149–1159

    Article  CAS  Google Scholar 

  • Bader RFW (1990) Atoms in molecules: a quantum theory. International series of monographs on chemistry. Oxford Clarendon Press, New York

    Google Scholar 

  • Bürgi HB, Dunitz JD, Shefter E (1974) Chemical reaction paths. IV. Aspects of O···C=O interactions in crystals. Acta Cryst Sect B 30:1517–1527

    Article  Google Scholar 

  • Coppens P (2005) Charge densities come of age. Angew Chem Int Ed 44:6810–6811

    Article  CAS  Google Scholar 

  • Destro R, Merati F (1995) Bond lengths, and beyond. Acta Crystallogr Sect B 51:559–570

    Article  Google Scholar 

  • Fedeli W, Dunitz JD (1968) Die Strukturen der mittleren Ringverbindungen XV. 6-Ketononanolid (Oxacyclodeca-2,7-dion). Helv Chim Acta 51:445–458

    Article  CAS  Google Scholar 

  • French AD, Csonka GI (2011) Hydroxyl orientations in cellobiose and other polyhydroxyl compounds: modeling versus experiment. Cellulose 18:897–909

    Article  CAS  Google Scholar 

  • Groom CR, Allen FH (2014) The Cambridge structural database in retrospect and prospect. Angew Chem Int Ed 53:662–671

    Article  CAS  Google Scholar 

  • Hosoya T, French AD, Rosenau T (2013) Chemistry of 5,8-dihydroxy-[1,4]-naphthoquinone, a key chromophore in aged cellulosics. Mini Rev Org Chem 10:309–315

    Article  CAS  Google Scholar 

  • Hübschle CB, Luger P (2006) Moliso—a program for colour-mapped iso-surfaces. J Appl Cryst 39:901–904

    Article  Google Scholar 

  • Keith TA (2010) AIMAll, http://aim.tkgristmill.com/references.html

  • Korntner P, Hosoya T, Dietz T, Eibinger K, Reiter H, Spitzbart M, Röder T, Borgads A, Kreiner W, Mahler AK, Winter H, Groiss Y, Wong S, French AD, Henniges U, Potthast A, Rosenau T (2015) Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics XII. Cellulose 22:1053–1062

    Article  CAS  Google Scholar 

  • Macrae F, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Cryst 41:466–470

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerization revealed by X-ray diffraction. J Wood Sci 46:452–457

    Article  CAS  Google Scholar 

  • Olsson K, Pernemalm PA, Theander O (1978) Formation of aromatic compounds from carbohydrates. VII. Reaction of d-glucose and glycine in slightly acidic, aqueous solution. Acta Chem Scand B 32:249–256

    Article  Google Scholar 

  • Owicki JC, Shipman LL, Scheraga HA (1975) Structure, energetics, and dynamics of small water clusters. J Phys Chem 79:1794–1811

    Article  CAS  Google Scholar 

  • Popoff T, Theander O (1972) Formation of aromatic compounds from carbohydrates: part 1. Reaction of d-glucuronic acid, d-glacturonic acid, d-xylose, and l-arabinose in slightly acidic, aqueous solution. Carbohydr Res 22:135–149

    Article  CAS  Google Scholar 

  • Potthast A, Röhrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4:743–749

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P, Saariaho A-M, Vuorinen T (2005) On the nature of carbonyl groups in cellulosic pulps. Cellulose 12:43–50

    Article  CAS  Google Scholar 

  • Řezáč J, Riley KE, Hobza P (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J Chem Theory Comput 7:2427–2438

    Article  Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Lange T, Ebner G, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl croups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3:959–968

    Article  Google Scholar 

  • Rosenau T, Potthast A, Milacher W, Adorjan I, Hofinger A, Kosma P (2005) Discoloration of cellulose solutions in N-methylmorpholine-N-oxide (Lyocell). Part 2: isolation and identification of chromophores. Cellulose 12:197–208

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Peralta-Inga Shields Z, French AD (2011) Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters. Cellulose 18:1623–1633

    Article  CAS  Google Scholar 

  • Singh UC, Kollman PA (1985) A water dimer potential based on ab initio calculations using Morokuma component analyses. J Chem Phys 83:4033–4040

    Article  CAS  Google Scholar 

  • Xu X, Goddard III WA (2004) The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc Natl Acad Sci USA 101:2673–2677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Rosenau or Alfred D. French.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenau, T., Potthast, A., Kosma, P. et al. 2,4′:2′,4 Dianhydride of 3-keto-glucoside, a precursor to chromophores of aged, yellow cellulose, and its weak interactions. Cellulose 24, 1227–1234 (2017). https://doi.org/10.1007/s10570-017-1198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1198-9

Keywords

Navigation