Skip to main content
Log in

Effects of salamander larvae on food webs in highly subsidised ephemeral ponds

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Ephemeral ponds are often dominated by species with both terrestrial and aquatic life phases. Such species have the potential to strongly alter the food web structure of ponds, particularly if they are predators. Here we experimentally tested the effects of salamander larvae (Salamandra salamandra) on invertebrate communities in ephemeral forest ponds. We repeatedly split two ponds into salamander enclosure- and exclosure-segments, and compared the diversity and biomass of potential prey organisms. We used stable isotopes of carbon (δ13C) and nitrogen (δ15N) of resources and consumers to characterise the food web structure. The presence of salamander larvae did not affect abundances of culicid larvae, their preferred prey. The population dynamics of most insect larvae was independent of the presence of salamander larvae, and was instead driven by the timing of hatching and emergence. However, a significant reduction resulting from salamander predation could be detected in the less abundant chironomid larvae. There was no substantial alteration of the food web structure as indicated by stable isotopes. However, the stable isotope results suggest a strong trophic subsidisation from the terrestrial system, which is probably the reason for the weak top-down effects of the salamander larvae on the invertebrate food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benke, A. C., J. B. W. Smock, A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Blaustein, L., J. Friedman & T. Fahima, 1996. Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76: 392.

    Article  Google Scholar 

  • Blaustein, J., A. Sadeh & L. Blaustein, 2013. Influence of fire salamander larvae on among-pool distribution of mosquito egg rafts: oviposition habitat selection or egg raft predation? Hydrobiologia 723: 157–165.

    Article  Google Scholar 

  • Briand, F., 2010. Environmental control of food web structure. Ecology 64: 253–263.

    Article  Google Scholar 

  • Brodin, T., M. Jonsson, C. Karlsson & F. Johansson, 2007. Intermediate predator impact on consumers weakens with increasing predator diversity in the presence of a top-predator. Acta Oecologica. 31(1): 79–85.

    Article  Google Scholar 

  • Brooks, R. T., 2000. Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands 20: 707–715.

    Article  Google Scholar 

  • Buckley, D., M. Alcobendas, M. García-París & M. H. Wake, 2007. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evolution Development 9: 105–115.

    Article  PubMed  Google Scholar 

  • Caspers, B. A., E. T. Krause, R. Hendrix, M. Kopp, O. Rupp, K. Rosentreter & S. Steinfartz, 2014. The more the better – polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salamandra salamandra). Molecular Ecology 23: 239–250.

    Article  PubMed  Google Scholar 

  • Chesson, P. & N. Huntly, 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist 150: 519–553.

    Article  CAS  PubMed  Google Scholar 

  • Crump, M. L., 1979. Intra-population variability in energy parameters of the salamander Plethodon cinereus. Oecologia 247: 235–247.

    Article  Google Scholar 

  • Davenport, J. M. & D. R. Chalcraft, 2012. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web. The Journal of Animal Ecology 81: 242–250.

    Article  PubMed  Google Scholar 

  • Davic, R. D. & H. H. Welsh, 2004. On the ecological roles of salamanders. Annual Review of Ecology Evolution and Systematics Annual Reviews 35: 405–434.

    Article  Google Scholar 

  • Davies, I. J., 1984. Sampling aquatic insect emergence. In Downing, J. A. & F. H. Rigler (eds.), A Manual on Methods for the Assessment of Secondary Productivity in Freshwaters. Blackwell Scientific Publications, Oxford: 161–221.

    Google Scholar 

  • Fretwell, S. D., 1987. Food chain dynamics: the central theory of ecology? Oikos 50: 291–301.

    Article  Google Scholar 

  • Gibbons, J. W., C. T. Winne, D. E. Scott, J. D. Willson, X. Glaudas, K. M. Andrews, B. D. Todd, L. A. Fedewa, L. Wilkinson, R. N. Tsaliagos, S. J. Harper, J. L. Greene, T. D. Tuberville, B. S. Metts, M. E. Dorcas, J. P. Nestor, C. A. Young, T. Akre, R. N. Reed, K. A. Buhlmann, J. Norman, D. A. Croshaw, C. Hagen & B. B. Rothermel, 2006. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation. Conservation Biology 20: 1457–1465.

    Article  PubMed  Google Scholar 

  • Greig, H. S., S. A. Wissinger & A. R. McIntosh, 2013. Top-down control of prey increases with drying disturbance in ponds: a consequence of non-consumptive interactions? The Journal of animal ecology 82(3): 598–607.

    Article  PubMed  Google Scholar 

  • Hocking, D. J., K. J. Babbitt & D. J. Hocking, 2014. Amphibian contributions to ecosystem services. Herpetological Conservation and Biology 9: 1–17.

    Google Scholar 

  • Holomuzki, J. R., J. P. Collins & P. E. Brunkow, 1994. Trophic control of fishless ponds by tiger salamander larvae. Oikos 71: 55–64.

    Article  Google Scholar 

  • Katano, O., T. Natsumeda & N. Suguro, 2013. Diurnal bottom feeding of predator fish strengthens trophic cascades to benthic algae in experimental flow-through pools. Ecological Research 28: 907–918.

    Article  Google Scholar 

  • Leroux, S. J. & M. Loreau, 2008. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology letters 11: 1147–1156.

    PubMed  Google Scholar 

  • Lincoln, F., 1930. Calculating Waterfowl Abundance on the Basis of Banding Returns. Department of Agriculture, Washington D.C.

    Google Scholar 

  • Mehner, T., J. Ihlau, H. Do, F. Ho, H. Dörner, F. Hölker, T. Mehner, J. Ihlau & H. Dorner, 2005. Can feeding of fish on terrestrial insects subsidize the nutrient pool of lakes? Limnology and Oceanography 50: 2022–2031.

    Article  Google Scholar 

  • Nery, T. & D. Schmera, 2016. The effects of top-down and bottom-up controls on macroinvertebrate assemblages in headwater streams. Hydrobiologia 763: 173–181.

    Article  CAS  Google Scholar 

  • O’Neill, B. J. & J. H. Thorp, 2014. Untangling food-web structure in an ephemeral ecosystem. Freshwater Biology 59: 1462–1473.

    Article  Google Scholar 

  • Paetzold, A., C. J. Schubert & K. Tockner, 2005. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8: 748–759.

    Article  Google Scholar 

  • Peckarsky, B. L., B. L. Kerans, B. W. Taylor & A. R. McIntosh, 2008. Predator effects on prey population dynamics in open systems. Oecologia 156: 431–440.

    Article  PubMed  Google Scholar 

  • Peus, F., 1972. Ueber das Subgenus Aedes sensu stricto in Deutschland (Diptera, Culicidae). Zeitschrift fuer angewandte Entomologie 72: 177–194.

    Article  Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology Ecological Society of America 83: 703–718.

    Google Scholar 

  • Reinhardt, T., 2014. New home, new life: the influence of shifts in fire-salamander larval habitat choice on population perfomance and their effect on structure and functioning of pond invertebrate communities. Technische Universität Dresden, Dresden.

    Google Scholar 

  • Reinhardt, T., A. Paetzold, S. Steinfartz & M. Weitere, 2013. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173: 281–291.

    Article  PubMed  Google Scholar 

  • Reinhardt, T., M. Weitere & S. Steinfartz, 2015. Inter-annual weather variability can drive the outcome of predator prey match in ponds. Amphibia-Reptilia 36: 97–109.

    Article  Google Scholar 

  • Ritchie, E. G. & C. N. Johnson, 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12: 982–998.

    Article  PubMed  Google Scholar 

  • Rowe, C. L. & W. A. Dunson, 1995. Impacts of hydroperiod on growth and survival of larval amphibians in temporary ponds of Central Pennsylvania, USA. Oecologia 102: 397–403.

    Article  PubMed  Google Scholar 

  • Rubbo, M. J., J. J. Cole & J. M. Kiesecker, 2006. Terrestrial subsidies of organic carbon support net ecosystem production in temporary forest ponds: evidence from an ecosystem experiment. Ecosystems 9: 1170–1176.

    Article  CAS  Google Scholar 

  • Rubbo, M. J., Æ. L. K. Belden & Æ. J. M. Kiesecker, 2008. Differential responses of aquatic consumers to variations in leaf-litter inputs. Hydrobiologia Springer 605: 37–44.

    Article  Google Scholar 

  • Sabo, J. L. & M. E. Power, 2002. Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey. Ecology 83: 3023.

    Article  Google Scholar 

  • Schmitz, O. J. & K. B. Suttle, 2001. Effects of top predator species on direct and indirect interactions in a food web. Ecology 82: 2072–2081.

    Article  Google Scholar 

  • Schriever, T. A. & D. D. Williams, 2013. Influence of pond hydroperiod, size, and community richness on food-chain length. Freshwater Science 32: 964–975.

    Article  Google Scholar 

  • Steinfartz, S., M. Veith & D. Tautz, 2000. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology Wiley Online Library 9: 397–410.

    Article  CAS  Google Scholar 

  • Tanentzap, A. J., B. W. Kielstra, G. M. Wilkinson, M. Berggren, N. Craig, P. A. del Giorgio, J. Grey, J. M. Gunn, S. E. Jones, J. Karlsson, C. T. Solomon & M. L. Pace, 2017. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Science Advances 3: e1601765.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiesmeier, B., 2004. Der Feuersalamander. Laurenti Verlag, Bielefeld.

    Google Scholar 

  • Walls, S. C. & M. G. Williams, 2001. The effect of community composition on persistence of prey with their predators in an assemblage of pond-breeding amphibians. Oecologia 128: 134–141.

    Article  PubMed  Google Scholar 

  • Weitere, M., D. Tautz, D. Neumann & S. Steinfartz, 2004. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Molecular ecology 13: 1665–1677.

    Article  PubMed  Google Scholar 

  • Wilbur, H. M., 1997. Experimental ecology of food webs: Complex systems in temporary ponds. Ecology 78(8): 2279–2302.

    Article  Google Scholar 

  • Williams, D. D., 1987. The Ecology of Temporary Waters. Springer, Portland.

    Book  Google Scholar 

  • Williams, D. D., 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation 7: 105–117.

    Article  Google Scholar 

  • Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer δ 13 C and δ 15 N and the trophic position of aquatic consumers. Ecology Ecological Society of America 80: 1395–1404.

    Google Scholar 

Download references

Acknowledgements

The study was supported by a scholarship of the Deutsche Bundesstiftung Umwelt (DBU) to TR. This research was possible with the kind permission of the governmental forestry office in Bonn and the Nature Reserve Authorities Bonn who granted the necessary permission for access and sampling of salamander larvae and invertebrates. Also we wish to thank the stable isotope lab of the University of Koblenz- Landau for processing the samples. Furthermore, we thank Amy MacLeod and Sam Armstrong for linguistic improvement of the manuscript and Heidrun Windisch and Patrick Fink for fruitful discussions and support on statistical analyses.

Author contributions

TR, MW, and SS originally developed the project idea and wrote the manuscript. TR conducted fieldwork and data analysis under the supervision of MW and SS. MB supervised the sampling, analyses, and interpretation of the stable isotope samples and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Reinhardt.

Additional information

Handling editor: Lee B. Kats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhardt, T., Brauns, M., Steinfartz, S. et al. Effects of salamander larvae on food webs in highly subsidised ephemeral ponds. Hydrobiologia 799, 37–48 (2017). https://doi.org/10.1007/s10750-017-3195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3195-2

Keywords

Navigation