Skip to main content
Log in

Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The pesticide metabolite 2,6-dichlorobenzamide (BAM) is very persistent in both soil and groundwater and has become one of the most frequently detected groundwater micropollutants. BAM is not removed by the physico-chemical treatment techniques currently used in drinking water treatment plants (DWTP); therefore, if concentrations exceed the legal threshold limit, it represents a sizeable problem for the stability and quality of drinking water production, especially in places that depend on groundwater for drinking water. Bioremediation is suggested as a valuable strategy for removing BAM from groundwater by deploying dedicated BAM-degrading bacteria in DWTP sand filters. Only a few bacterial strains with the capability to degrade BAM have been isolated, and of these, only three isolates belonging to the Aminobacter genus are able to mineralise BAM. Considerable effort has been made to elucidate degradation pathways, kinetics and degrader genes, and research has recently been presented on the application of strain Aminobacter sp. MSH1 for the purification of BAM-contaminated water. The aim of the present review was to provide insight into the issue of BAM contamination and to report on the current status and knowledge with regard to the application of microorganisms for purification of BAM-contaminated water resources. This paper discusses the prospects and challenges for bioaugmentation of DWTP sand filters with specific BAM-degrading bacteria and identifies relevant perspectives for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agriculture & Environment Research Unit (2016) PPDB: Pesticide Properties DataBase. University of Hertfordshire, http://sitem.herts.ac.uk/aeru/footprint/index2.htm.

  • Albers CN, Jacobsen OS, Aamand J (2014) Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters—initial adhesion and BAM degradation potentials. Appl Microbiol Biotechnol 98:957–967. doi:10.1007/s00253-013-4942-6

    Article  CAS  PubMed  Google Scholar 

  • Albers CN, Ellegaard-Jensen L, Harder CB, Rosendahl S, Knudsen BE, Ekelund F, Aamand J (2015a) Groundwater chemistry determines the prokaryotic community structure of waterworks sand filters. Environ Sci Technol 49:839–846. doi:10.1021/es5046452

    Article  CAS  PubMed  Google Scholar 

  • Albers CN, Feld L, Ellegaard-Jensen L, Aamand J (2015b) Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Water Res 83:61–70. doi:10.1016/j.watres.2015.06.023

    Article  CAS  PubMed  Google Scholar 

  • Benner J, Helbling DE, Kohler HPE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N (2013) Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res 47:5955–5976. doi:10.1016/j.watres.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  • Beynon KI, Wright AN (1968) Persistence, penetration, and breakdown of chlorthiamid and dichlobenil herbicides in field soils of different types. J Sci Food Agric 19:718–722. doi:10.1002/jsfa.2740191208

    Article  CAS  Google Scholar 

  • Beynon KI, Wright AN (1972) The fates of the herbicides chlorthiamid and dichlobenil in relation to residues in crops, soils, and animals. In: Gunther FA, Gunther JD (eds) Residue reviews: residues of pesticides and other contaminants in the Total environment. Springer New York, New York, pp 23–53. doi:10.1007/978-1-4615-8485-8_2

    Chapter  Google Scholar 

  • Björklund E, Anskjær GG, Hansen M, Styrishave B, Halling-Sørensen B (2011) Analysis and environmental concentrations of the herbicide dichlobenil and its main metabolite 2,6-dichlorobenzamide (BAM): a review. Sci Total Environ 409:2343–2356. doi:10.1016/j.scitotenv.2011.02.008

    Article  PubMed  Google Scholar 

  • Clausen L, Larsen F, Albrechtsen HJ (2004) Sorption of the herbicide dichlobenil and the metabolite 2,6-dichlorobenzamide on soils and aquifer sediments. Environ Sci Technol 38:4510–4518. doi:10.1021/es035263i

    Article  CAS  PubMed  Google Scholar 

  • Clausen L, Arildskov NP, Larsen F, Aamand J, Albrechtsen H-J (2007) Degradation of the herbicide dichlobenil and its metabolite BAM in soils and subsurface sediments. J Contam Hydrol 89:157–173. doi:10.1016/j.jconhyd.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  • Dealtry S, Ding G-C, Weichelt V, Dunon V, Schlüter A, Martini MC, Papa MFD, Lagares A, Amos GCA, Wellington EMH, Gaze WH, Sipkema D, Sjöling S, Springael D, Heuer H, van Elsas JD, Thomas C, Smalla K (2014) Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats. PLoS One 9:e89922. doi:10.1371/journal.pone.0089922

    Article  PubMed  PubMed Central  Google Scholar 

  • Desaint S, Hartmann A, Parekh NR, Fournier JC (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34:173–180. doi:10.1016/S0168-6496(00)00092-1

    Article  CAS  PubMed  Google Scholar 

  • Dunon V, Sniegowski K, Bers K, Lavigne R, Smalla K, Springael D (2013) High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiol Ecol 86:415–431. doi:10.1111/1574-6941.12173

    Article  CAS  PubMed  Google Scholar 

  • Ekelund F, Harder CB, Knudsen BE, Aamand J (2015) Aminobacter MSH1-mineralisation of BAM in sand-filters depends on biological diversity. PLoS One 10:e0128838. doi:10.1371/journal.pone.0128838

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellegaard-Jensen L, Albers CN, Aamand J (2016) Protozoa graze on the 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 introduced into waterworks sand filters. Appl Microbiol Biotechnol 100:8965–8973. doi:10.1007/s00253-016-7710-6

    Article  CAS  PubMed  Google Scholar 

  • European Commission EU (2011) COMMISSION IMPLEMENTING DECISION of 11 April 2011 concerning the non-inclusion of dichlobenil in Annex I to Council Directive 91/414/EEC. Official Journal of the European Union, Brussels, 11 April 2011.

  • European Council EU (1998) Drinking Water Directive (COUNCIL DIRECTIVE 98/83/EC). Official Journal of the European Communities, Brussels, 3 November 1998.

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. doi:10.1146/annurev.micro.50.1.553

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Leal L, Temmink H, Zeeman G, Buisman CJ (2011) Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res 45:2887–2896

    Article  PubMed  Google Scholar 

  • Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17:503–510. doi:10.1007/s10532-005-9021-y

    Article  CAS  PubMed  Google Scholar 

  • Holtze MS, Hansen HCB, Juhler RK, Sørensen J, Aamand J (2007) Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environ Pollut 148:343–351

    Article  CAS  PubMed  Google Scholar 

  • Holtze MS, Sørensen SR, Sørensen J, Aamand J (2008) Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut 154:155–168. doi:10.1016/j.envpol.2007.09.020

    Article  CAS  PubMed  Google Scholar 

  • Horemans B, Raes B, Vandermaesen J, Simanjuntak Y, Brocatus H, T’Syen J, Degryse J, Boonen J, Wittebol J, Lapanje A, Sørensen SR, Springael D (2016) Biocarriers improve bioaugmentation efficiency of a rapid sand filter for the treatment of 2,6-dichlorobenzamide (BAM)-contaminated drinking water. Environ Sci Technol. doi:10.1021/acs.est.6b05027

  • Janniche GS, Clausen L, Albrechtsen H-J (2011) Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers—effect of initial concentrations and adaptation. Environ Pollut 159:2801–2807. doi:10.1016/j.envpol.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR (2015) Pesticider. In: Thorling L (ed) Grundvand. Status og udvikling 1989–2014. GEUS, Denmark, pp 105–129 (in Danish)

    Google Scholar 

  • Kämpfer P, Neef A, Salkinoja-Salonen MS, Busse HJ (2002) Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). Int J Syst Evol Microbiol 52:835–839. doi:10.1099/ijs.0.01897-0

    PubMed  Google Scholar 

  • Kimura K, Amy G, Drewes JE, Heberer T, Kim T-U, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227:113–121

    Article  CAS  Google Scholar 

  • Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J (2013) Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM). Environ Pollut 181:122–127. doi:10.1016/j.envpol.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  • van der Kooij D (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J Am Water Works Assoc 84:57–65

    Google Scholar 

  • Król JE, Penrod JT, McCaslin H, Rogers LM, Yano H, Stancik AD, Dejonghe W, Brown CJ, Parales RE, Wuertz S, Top EM (2012) Role of IncP-1β plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. Appl Environ Microbiol 78:828–838. doi:10.1128/aem.07480-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Layh N, Hirrlinger B, Stolz A, Knackmuss H-J (1997) Enrichment strategies for nitrile-hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674. doi:10.1007/s002530050993

    Article  CAS  Google Scholar 

  • Madsen HT, Ammi-said A, Van der Bruggen B, Søgaard EG (2015) Addition of adsorbents to nanofiltration membrane to obtain complete pesticide removal. Water Air Soil Pollut 226:160. doi:10.1007/s11270-015-2419-1

    Article  Google Scholar 

  • Martini MC, Albicoro FJ, Nour E, Schlüter A, van Elsas JD, Springael D, Smalla K, Pistorio M, Lagares A, Del Papa MF (2015) Characterization of a collection of plasmid-containing bacteria isolated from an on-farm biopurification system used for pesticide removal. Plasmid 80:16–23. doi:10.1016/j.plasmid.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  • McDonald IR, Kämpfer P, Topp E, Warner KL, Cox MJ, Connell Hancock TL, Miller LG, Larkin MJ, Ducrocq V, Coulter C, Harper DB, Murrell JC, Oremland RS (2005) Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 55:1827–1832. doi:10.1099/ijs.0.63716-0

    Article  CAS  PubMed  Google Scholar 

  • Meth-Cohn O, Wang M-X (1997) An in-depth study of the biotransformation of nitriles into amides and/or acids using Rhodococcus rhodochrous AJ2701. J Chem Soc Perkin 1:1099–1104. doi:10.1039/a607977f

    Article  Google Scholar 

  • Ministry of Agricultural Food and Rural affairs (2015) Guide to weed control 2016–2017. Ministry of Agriculture, Food and Rural Affairs, Ontario, Canada http://www.omafra.gov.on.ca/english/crops/pub75/pub75.pdf.

    Google Scholar 

  • Miyazaki S, Sikka HC, Lynch RS (1975) Metabolism of dichlobenil by microorganisms in the aquatic environment. J Agric Food Chem 23:365–368. doi:10.1021/jf60199a026

    Article  CAS  PubMed  Google Scholar 

  • Montgomery M, Yu TC, Freed VH (1972) Kinetics of dichlobenil degradation in soil. Weed Res 12:31–36. doi:10.1111/j.1365-3180.1972.tb01184.x

    Article  CAS  Google Scholar 

  • Porazzi E, Pardo Martinez M, Fanelli R, Benfenati E (2005) GC–MS analysis of dichlobenil and its metabolites in groundwater. Talanta 68:146–154. doi:10.1016/j.talanta.2005.04.044

    Article  CAS  PubMed  Google Scholar 

  • Pukkila V, Kontro MH (2014) Dichlobenil and 2,6-dichlorobenzamide (BAM) dissipation in topsoil and deposits from groundwater environment within the boreal region in southern Finland. Environ Sci Pollut Res Int 21:2289–2297. doi:10.1007/s11356-013-2164-1

    Article  CAS  PubMed  Google Scholar 

  • Pukkila V, Gustafsson J, Tuominen J, Aallonen A, Kontro MH (2009) The most-probable-number enumeration of dichlobenil and 2,6-dichlorobenzamide (BAM) degrading microbes in Finnish aquifers. Biodegradation 20:679–686. doi:10.1007/s10532-009-9255-1

    Article  CAS  PubMed  Google Scholar 

  • Reemtsma T, Alder L, Banasiak U (2013) Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. Water Res 47:5535–5545. doi:10.1016/j.watres.2013.06.031

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Madsen JS, Sorensen SJ, Burmolle M (2015) High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J 9:81–89. doi:10.1038/ismej.2014.96

    Article  CAS  PubMed  Google Scholar 

  • Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J (2009) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44:625–637

    Article  PubMed  Google Scholar 

  • Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A (2011) The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 273:142–147

    Article  CAS  Google Scholar 

  • Schipper PNM, Vissers MJM, van der Linden AMA (2008) Pesticides in groundwater and drinking water wells: overview of the situation in the Netherlands. Water Sci Technol 57:1277–1286. doi:10.2166/wst.2008.255

    Article  CAS  PubMed  Google Scholar 

  • Schlömann M (1994) Evolution of chlorocatechol catabolic pathways—conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 5:301–321. doi:10.1007/BF00696467

    Article  PubMed  Google Scholar 

  • Schultz-Jensen N, Knudsen B, Frkova Z, Aamand J, Johansen T, Thykaer J, Sørensen S (2014) Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1. Appl Microbiol Biotechnol 98:2335–2344. doi:10.1007/s00253-013-5202-5

    Article  CAS  PubMed  Google Scholar 

  • Schultz-Jensen N, Aamand J, Sørensen SR (2016) Bioaugmentation potential of free and formulated 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in soil, sand and water. AMB Express 6:33. doi:10.1186/s13568-016-0204-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhar A, Horemans B, Aamand J, Sørensen SR, Vanhaecke L, Vanden Bussche J, Hofkens J, Springael D (2016) Surface colonization and activity of the 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. strain MSH1 at macro- and micropollutant BAM concentrations. Environ Sci Technol 50:10123–10133. doi:10.1021/acs.est.6b01978

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Holtze MS, Sørensen SR, Sørensen SJ, Aamand J (2006) Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144:289–295

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Badawi N, Anskjaer GG, Albers CN, Sorensen SR, Sorensen J, Aamand J (2012) Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by Aminobacter spp. Appl Microbiol Biotechnol 94:237–245. doi:10.1007/s00253-011-3591-x

    Article  CAS  PubMed  Google Scholar 

  • Sjøholm OR, Aamand J, Sørensen J, Nybroe O (2010a) Degrader density determines spatial variability of 2,6-dichlorobenzamide mineralisation in soil. Environ Pollut 158:292–298

    Article  PubMed  Google Scholar 

  • Sjøholm OR, Nybroe O, Aamand J, Sørensen J (2010b) 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions. Environ Pollut 158:3618–3625. doi:10.1016/j.envpol.2010.08.006

    Article  PubMed  Google Scholar 

  • Sørensen SR, Holtze MS, Simonsen A, Aamand J (2007) Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol 73:399–406. doi:10.1128/aem.01498-06

    Article  PubMed  Google Scholar 

  • Springael D, Ryngaert A, Merlin C, Toussaint A, Mergeay M (2001) Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria. Appl Environ Microbiol 67:42–50. doi:10.1128/AEM.67.1.42-50.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269. doi:10.1016/S0958-1669(03)00066-1

    Article  CAS  PubMed  Google Scholar 

  • Törnquist M, Kreuger J, Adielsson S (2007) Occuring of pesticides in Swedish water resources against a background of national risk-reduction programms - results from 20 years of monitoring. In: XIII Symposium Pesticide Chemistry - Environmental Fate and Human Health, Piacenza, Italy, 2007.

  • T’Syen J, Tassoni R, Hansen L, Sørensen SJ, Leroy B, Sekhar A, Wattiez R, De Mot R, Springael D (2015) Identification of the amidase BbdA that initiates biodegradation of the groundwater micropollutant 2,6-dichlorobenzamide (BAM) in Aminobacter sp MSH1. Environ Sci Technol 49:11703–11713. doi:10.1021/acs.est.5b02309

    Article  PubMed  Google Scholar 

  • Urakami T, Araki H, Oyanagi H, Suzuki KI, Komagata K (1992) Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. Nov. Int J Syst Bacteriol 42:84–92

    Article  Google Scholar 

  • Vandermaesen J, Horemans B, Degryse J, Boonen J, Walravens E, Springael D (2016) Mineralization of the common groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) in sand filter units of drinking water treatment plants. Environ Sci Technol 50:10114–10122. doi:10.1021/acs.est.6b01352

    Article  CAS  PubMed  Google Scholar 

  • Verloop A, Nimmo WB (1970) Metabolism of dichlobenil in sandy soil. Weed Res 10:65–70. doi:10.1111/j.1365-3180.1970.tb00924.x

    Article  CAS  Google Scholar 

  • Veselá AB, Pelantová H, Šulc M, Macková M, Lovecká P, Thimová M, Pasquarelli F, Pičmanová M, Pátek M, Bhalla TC, Martínková L (2012) Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. J Ind Microbiol Biot 39:1811–1819. doi:10.1007/s10295-012-1184-z

    Article  Google Scholar 

  • Vlaamse Milieumaatschappij (VMM) (2012) Pesticiden in het grondwater in Vlaanderen 64 (in Dutch)

  • Vosáhlová J, Pavlů L, Vosáhlo J, Brenner V (1997) Communication to the editor degradation of Bromoxynil, Ioxynil, Dichlobenil and their mixtures by Agrobacterium radiobacter 8/4. Pestic Sci 49:303–306. doi:10.1002/(sici)1096-9063(199703)49:3<303::aid-ps519>3.0.co;2-t

    Article  Google Scholar 

  • Werlen C, Kahler HPE, Van Der Meer JR (1996) The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem 271:4009–4016. doi:10.1074/jbc.271.8.4009

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, VanBriesen JM (2008) Bacterial growth yields on EDTA, NTA, and their biodegradation intermediates. Biodegradation 19:41–52. doi:10.1007/s10532-007-9113-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lea Ellegaard-Jensen, Jens Aamand and Lars Hestbjerg Hansen were supported by the research project MEM2BIO (Innovation Fund Denmark, contract number 5157-00004B).

Benjamin Horemans was supported by the FWO postdoctoral fellowship grant (12Q0215N) and the BELSPO IAP-project μ-manager no. P7/25. Bart Raes was supported by the C1 project no. C14/15/043 of KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Ellegaard-Jensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellegaard-Jensen, L., Horemans, B., Raes, B. et al. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Appl Microbiol Biotechnol 101, 5235–5245 (2017). https://doi.org/10.1007/s00253-017-8362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8362-x

Keywords

Navigation