Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Die angezeigten Daten werden derzeit aktualisiert.
Derzeit steht der Fernleihindex leider nicht zur Verfügung.
Exportieren
Filter
  • Wissenschaftspark Albert Einstein  (14)
  • SB Zossen
  • SB Luckenwalde
  • Bibliothek im Kontor
  • SB Rathenow
  • Kinemathek
  • Landesgeschichtliche Vereinigung
  • Stiftung Fürst-Pückler-Museum
  • GB Großbeeren
  • Akademie der Wissenschaften der DDR. Forschungsbereich Geo- und Kosmoswissenschaften. Zentralinstitut für Physik der Erde  (14)
  • Hochschulschrift  (14)
  • Ratgeber
Medientyp
Sprache
Region
Bibliothek
  • Wissenschaftspark Albert Einstein  (14)
  • SB Zossen
  • SB Luckenwalde
  • Bibliothek im Kontor
  • SB Rathenow
  • +
Erscheinungszeitraum
Person/Organisation
Schlagwörter
  • 1
    UID:
    kobvindex_GFZ55268
    Umfang: 80 Seiten , Diagramme, Tabellen, Illustrationen , 30 cm
    Ausgabe: Als Manuskript gedruckt
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 56
    Inhalt: Das Ziel der vorliegenden Arbeit ist die Untersuchung der photoelektrischen Registrierung von Sterndurchgangszeiten, um einen Beitrag zur Entwicklung des photoelektrischen Zenitrohrs (PEZR) zu leisten. Nach Hinweisen zur Zielstellung werden zunächst in einem Überblick verschiedene bisher angewendete photoelektrische Meßverfahren vorgestellt und dann das ausgewählte Meßverfahren sowie die Entwicklung der Versuchsapparatur beschrieben. Daneben wird das Auswerteverfahren der registrierten Meßwerte mit einer EDVA zur Ermittlung der Sterndurchgangszeit vorgelegt. Anschließend werden die Reichweite und die Genauigkeit der entwickelten Versuchsapparatur abgeschätzt. Weiter werden die Ergebnisse sowie die Erfahrungen aus der Erprobung in 5 Beobachtungsserien mit 5 verschiedenen Gittern und 870 Sterndurchgangsbeobachtungen dargestellt. (Bei einem Objektiv mit der effektiven Öffnung von 16,7 cm und der Brennweite von 100 cm waren die Sterne bis zur Größenklasse 10 zu beobachten, und es wurden durchschnittliche Meßfehler in 2 Koordinaten von 0,082" erreicht.) Zum Schluß erfolgen die Einschätzung und die Diskussion von Verbesserungsmöglichkeiten für den endgültigen Einsatz am PEZR.
    Anmerkung: MAB0014.001: SR 90.0917(56) , MAB0036: s , Vorwort Zusammenfassungen 1. Einleitung 2. Überblick über verschiedene photoelektrische Verfahren 3. Beschreibung des gewählten Meßverfahrens 3.1. Blockschaltbild 3.2. Funktionsprinzip 3.3. Gründe für die Wahl des Meßprinzips 4. Entwicklung der Versuchsapparatur 4.1. Mechanisch-optischer Teil 4.1.1. Fernrohr 4.1.2. Größe der Sternabbildung 4.1.3. Gitter 4.2. Elektronischer Teil 4.2.1. Lichtempfänger und Verstärker 4.2.2. Zeitgebersystem 4.2.3. Registriersystem 4.2.4. Fernbedienung 5. Auswerteverfahren zur Ermittlung der Sterndurchgangszeit 5.1. Ermittlung der Sterndurchgangszeit für jeden Spalt 5.1.1. Variante 1 5.1.2. Variante 2 5.2. Ermittlung der Sterndurchgangszeit für das ganze Gitter 6. Reichweitenabschätzung 6.1. Größe des photoelektrischen Stroms 6.2. Anzahl der zu zählenden Photoelektronen 6.3. Begrenzung der Helligkeit des Himmelshintergrundes 7. Fehlerabschätzung 7.1. Ableitung der Formeln aus dem Auswerteverfahren 7.2. Richtungsszintillation 7.3. Helligkeitsszintillation 7.4. Rauschen 7.5. Gittergenauigkeit 7.6. Diskrete Registrierung 7.7. Zusammenfassung 8. Erprobung und Untersuchung der Versuchsapparatur 8.1. Messung des Dunkelstroms des SEV 8.2. Festlegung der Diskriminatorschwelle 8.3. Durchführung der Sterndurchgangsbeobachtungen 8.4. Untersuchungen und Analysen des Beobachtungsmaterials 8.4.1. Differenzkurve 8.4.2. Auswertung mit der EDVA Robotron 300 8.4.3. Reichweite 8.4.4. Meßfehler 8.4.5. Fehlereinfluß der diskreten Registrierung 9. Zum Einsatz am photoelektrischen Zenitrohr 9.1. Mechanisch-optischer Teil 9.2. Elektronischer Teil 10. Zusammenfassung und Schlußfolgerungen Literatur Anhang
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 56
    Weitere Ausg.: Onlineausgabe Untersuchungen zur photoelektrischen Registrierung von Sterndurchgangszeiten
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    kobvindex_GFZ55286
    Umfang: 205 Seiten , Illustrationen, Karten , 30 cm
    Ausgabe: Als Manuskript gedruckt
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 87
    Inhalt: In einer durch eigene Geländearbeiten sowohl im südlichen Afrika (VR Moçambique) als auch Antarktika (Shackleton Range während der 22. Sowjetischen Antarktisexpedition) gestützten Literaturauswertung wird das geologische Regime des südlichen Afrikas und Antarktikas vom Präkambrium bis zum Jura, dem Beginn der Aufspaltung des Gondwana-Superkontinentes, in zahlreichen paläogeographischen und tektonischen Schemakarten beschrieben und die entsprechenden geologischen Strukturen beider Kontinente auf mögliche ehemalige Zusammengehörigkeit überprüft. Aufgrund der gesammelten Unterlagen ist die beste Übereinstimmung erreicht, wenn Gebiete des Dronning Maud Land Antarktikas an die heutige Küste der VR Moçambique angepaßt werden. Im westlichen Bereich der Nahtstelle schiebt sich das Falkland-/Malwinen-Plateau ein.
    Anmerkung: MAB0014.001: SR 90.0917(87) , MAB0036: s , Aktualisierte Fassung der am 19. Oktober 1984 bei der Akademie der Wissenschaften der DDR verteidigten Dissertation B , Zusammenfassungen Vorbemerkungen Legende, verwendet für Abbildungen und teilweise Tabellen 1. Afrika 1.1. Präkambrium 1.1.1. Archaische Kratone 1.1.1.1. Simbabwe-Kraton 1.1.1.2. Kaapvaal-Kraton 1.1.1.3. Limpopo-Provinz 1.1.2. Archaische Epikratonbecken 1.1.2.1. Pongola-Supergruppe 1.1.2.2. Witwatersrand-Triade 1.1.3. Altproterozoische Epikratonbecken der Transvaal-Supergruppe 1.1.3.1. Wolkberg-Gruppe 1.1.3.2. Black-Reef-Gruppe 1.1.3.3. Dolomit-/Ghaap-Gruppe 1.1.3.4. Pretoria-/Griquatown-Gruppe 1.1.4. Tektonik der Epikratonbecken (bis vor 2.000 Mill.J.) 1.1.4.1. Tektonischer Bau des Gesamtbeckens 1.1.4.2. Tektonischer Bau am Südrand 1.1.4.3. Bushveld-Magmatitkomplex 1.1.5. Mittelproterozoische Epikratonbecken 1.1.5.1. Waterberg-Gruppe (Kaapvaal-Kraton) 1.1.5.2. Umkondo-Gruppe (Simbabwe-Kraton) 1.1.6. Namaqua-Natal-Mobilgürtel 1.1.7. Jungproterozoische Akkumulationsgebiete 1.1.7.1. Geosynklinalentwicklung 1.1.7.2. Tafelentwicklung 1.1.8. Panafrikanische Tektogenese 1.1.8.1. Geosynklinalgebiete 1.1.8.2. Aktivierungsgebiete (Mozambique Belt) 1.2. Phanerozoikum 1.2.1. Cape-Supergruppe 1.2.1.1. Tafelberg-/Natal-Gruppe 1.2.1.2. Bokkeveld-Gruppe 1.2.1.3. Witteberg-Gruppe 1.2.2. Karroo-Supergruppe 1.2.2.1. Dwyka-Gruppe 1.2.2.1.1. Great Karroo Basin 1.2.2.1.2. Übrige Gebiete 1.2.2.1.3. Paläogeographie 1.2.2.2. Ecca-Gruppe und Upper-Dwyka shales 1.2.2.2.1. Great Karroo Basin 1.2.2.2.2. Übrige Gebiete 1.2.2.2.3. Paläogeographie 1.2.2.3. Beaufort-Gruppe 1.2.2.3.1. Great Karroo Basin 1.2.2.3.2. Übrige Gebiete 1.2.2.3.3. Paläogeographie 1.2.2.4. Untere Stormberg-Gruppe 1.2.2.4.1. Great Karroo Basin 1.2.2.4.2. Übrige Gebiete 1.2.2.4.3. Paläogeographie 1.2.2.5. Obere Stormberg-Gruppe 1.2.2.5.1. Great Karroo Basin 1.2.2.5.2. Libombos 1.2.2.5.3. Nuanetsi-Magmatitkomplex 1.2.2.5.4. Übrige Gebiete 1.2.2.5.5. Magmatische Provinzen 1.2.2.6. Cape-Tektogenese 1.2.3. Postkarroo 1.2.3.1. Kreide 1.2.3.2. Känozoikum 1.2.3.3. Tektonisches Regime 2. Antarktika 2.1. Ostantarktischer Kraton 2.1.1. Kristallines Fundament 2.1.1.1. Enderby Land 2.1.1.2. Dronning Maud Land 2.1.1.3. Shackleton Range 2.1.1.4. Transantarktisches Gebirge 2.1.2. Präriphäische Epikratonentwicklung 2.1.3. Riphäische Epikratonentwicklung 2.2. Mobilgürtel des Transantarktischen Gebirges 2.2.1. Geosynklinalentwicklung 2.2.1.1. Riphäikum 2.2.1.2. Kambrium -- Ordovizium 2.2.2. Tektogene Entwicklung 2.2.3. Subsequenter Magmatismus 2.3. Tafelentwicklung der Beacon-Supergruppe 2.3.1. Sedimente 2.3.1.1. Präglaziale Sedimente 2.3.1.2. Glaziale Sedimente 2.3.1.3. Permische Postglazialsedimente 2.3.1.4. Triassische Postglazialsedimente 2.3.2. Ferrar-Magmatite 2.3.3. Tektogene Entwicklung 2.4. Westantarktika 3. Regionalgeologischer Vergleich zwischen südlichem Afrika und Antarktika 3.1. Präriphäikum 3.2. Tektogenetische Beanspruchungen zwischen 2.000 und 900 Mill.J. 3.3. Riphäikum 3.3.1. Geosynklinalentwicklung 3.3.2. Tafelentwicklung 3.4. Panafrikanische bzw. Beardmore-Tektogenese 3.5. Kambrium bis Unteres Ordovizium 3.6. Karroo- bzw. Beacon-Supergruppe 3.6.1. Präglazialablagerungen 3.6.2. Permokarbonische Glazialablagerungen 3.6.3. Postglazialablagerungen 3.6.4. Cape-Weddell-Faltung 3.6.5. Jurassischer Tafelmagmatismus 4. Position von Afrika und Antarktika im Gondwana-Superkontinent 4.1. Bedeutung des Falkland-/Malwinen-Plateau 4.2. Rekonstruktionsversuch 5. Schlußfolgerungen Literatur
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 87
    Weitere Ausg.: Onlineausgabe Vergleich der geologischen Entwicklung des südlichen Afrika mit der des antarktischen Kontinents
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    kobvindex_GFZ95190_2
    Umfang: 1 Online-Ressource (91 Seiten) , Illustrationen, Fotos
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 90
    Anmerkung: vollständige Fassung der am 6. November 1984 bei der Akademie der Wissenschaften der DDR verteidigte Dissertation A , 1. Einleitung 2. Zur Formalisierung fernerkundungsspezifischer Erkennungsprozesse 2.1. Das Vektorkonzept in der Fernerkundung 2.2. Stochastisch überwachte Erkennung 2.3. Physikalisch überwachte Erkennung 2.3.1. Fachspezifische und Fernerkundungsspezifische Objektmerkmale 2.3.2. Induktive und deduktive Modelle bei der physikalisch überwachten Erkennung 2.3.3. Vorschlag für ein Formalisierungsprinzip im Rahmen des physikalisch-überwachten Erkennungskonzeptes 2.3.4. Verfahren zur Merkmalsextraktion 3. Schaffung der experimentellen Voraussetzungen 3.1. Anforderungen an die Messung des spektralen gerichteten Remissionskoeffizienten 3.1.1. Anforderungen aus den speziellen Beleuchtungsbedingungen einer natürlichen Szene 3.1.2. Anforderungen aus speziellen Objekteigenschaften 3.2. Stand der experimentellen Gerätetechnik 3.3. Realisierung der experimentellen Voraussetzungen 3.4. Eigenschaften des Feldspektrometers BSP-83 3.4.1. Meßaufbau und -methoden 3.4.2. Spektralkanäle und Bandbreiten 3.4.3. Stabilität des Meßsignals 3.4.4. Öffnungswinkel des Bodenobjektivs und Indikatrix der Streuscheibe 3.4.5. Zeitlicher Ablauf des Meßvorganges 3.4.6. Bestimmung des Verstärkungsverhältnisses 4. Vorbereitung und Durchführung der Feldexperimente 1982/1983 4.1. Allgemeine methodische Grundlagen 4.2. Festlegung der Untersuchungsobjekte und Testgebiete 4.3. Auswahl der fachspezifischen Merkmale sowie der Störparameter 4.4. Aufstellung des Versuchsplanes 5. Aufbereitung der Meßdaten 5.1. Datenübernahme und Vorverarbeitung 5.2. Datenspeicherung 5.3. Statistische Datenanalyse 5.3.1. Faktorenanalyse 5.3.2. Varianzanalyse 5.3.3. Regressions- und Korrelationsanalyse 5.3.4. Diskriminanzanalyse 6. Auswertung und Ergebnisse der Feldexperimente 1982/83 6.1. Ergebnisse der Meßperiode 1982 6.2. Ergebnisse der Meßperiode 1983 6.3. Ergebnisse der Radiometermessungen 7. Zusammenfassung und Schlußfolgerungen 8. Literaturverzeichnis
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 90
    Weitere Ausg.: Druckausgabe Beiträge zur in situ-Messung von Spektralcharakteristiken natürlicher Objekte
    Sprache: Deutsch
    Schlagwort(e): Electronic books ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    kobvindex_GFZ95192_2
    Umfang: 1 Online-Ressource (122 Seiten) , Illustrationen, Diagramme, Tabellen
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 92
    Inhalt: Die Darstellung des Gravitationsfeldes durch Überlagerung von Punktmassenpotentialen wird diskutiert und eingeordnet. Es wird das Problem der Optimierung der Punktmassenpositionen näher untersucht. Dazu werden die Punktmassenpotentiale als Hilbertraumvektoren aufgefaßt. Es gelingt, einen Algorithmus zu erarbeiten, mit dessen Hilfe ein vorgegebenes Feld in Form von Meßwerten auf der Erdoberfläche durch schrittweise Erhöhung der Zahl der Punktmassen approximiert werden kann, wobei die Punktmassenpositionen nach jedem Schritt optimal sind. Anhand simulierter Daten werden eine Reihe von Punktmassenmodellen berechnet. Vergleiche mit gleichmäßig verteilten Punktmassen und mit Kugelfunktionen, die Analyse der Spektren sowie die Modellierung von Satellitenbahnen zeigen die Vorteile des Verfahrens.
    Anmerkung: Zugl.: Potsdam, Akad. der Wiss. der DDR, FB Geo- und Kosmoswiss., Zentralinst. für Physik der Erde, Diss. A, 1986 , Liste der verwendeten Formelzeichen Summary резюме Zusammenfassung 1. Wozu Kenntnis und Darstellung des Gravitationsfeldes? 2. Verschiedene Ziele - verschiedene Darstellungsformen für das Gravitationsfeld 2.1. Zum Begriff "Darstellung" 2.2. Anforderungen an die Darstellung 2.3. Einige häufig genutzte Darstellungsformen 2.3.1. Kollokation als direkte Darstellungsform 2.3.2. Integralformeln 2.3.3. Quellendarstellung 2.3.4. Kugelfunktionsentwicklung 2.3.5. Multipole 2.3.6. Modell einer einfachen Massenschicht 2.3.7. Samplingfunktionen 2.3.8. Finite Elemente 2.3.9. Spline - Funktionen 2.3.10. Harmonische Kernfunktionen 2.3.11. Multiquadratische Methode 2.3.12. DIRAC - Impulsmethode nach Bjerhammar 2.4. Die Darstellung des Gravitationsfeldes durch Punktmassen 2.4.1. Verschiedene Zugänge - Beziehungen zu anderen Darstellungsformen 2.4.2. Bisherige praktische Anwendungen 2.4.3. Potentielle Möglichkeiten der Punktmassendarstellung 3. Punktmassenapproximation mit automatischer Optimierung der Orte der Massen 3.1. Punktmassenpotentiale als Basissystem im Hilbertraum 3.1.1. Einige Definitionen aus der Funktionalanalysis 3.1.2. Vollständigkeit der Punktmassenpotentiale 3.1.3. Lineare Unabhängigkeit 3.2. Ausarbeitung eines Approximationsalgorithmus' 3.2.1. Formulierung des Algorithmus' 3.2.2. Wahl des Skalarprodukts/Skalarprodukt zweier Punktmassenpotentiale 3.2.2.1. Das Skalarprodukt ... für Punktmassenpotentiale in Abhängigkeit vom Ort der Punktmassen 3.2.2.2. Das Skalarprodukt ... für Punktmassenpotentiale in Abhängigkeit vom Ort der Punktmassen 3.2.2.3. Diskussion der beiden Skalarprodukte 3.2.3. Die Bestimmung des Anfangsortes jeder neuen Punktmasse 3.3. Diskussion des Algorithmus' 3.3.1. Zur Auswahl der N-ten Punktmasse aus der Menge E³\Q 3.3.2. Abschätzung der Quasiorthogonalität - Wahl des Normalfeldes 3.3.3. Einige Überlegungen zur Konvergenz des Algorithmus' 3.3.4. Einige Bemerkungen zur Anwendung des SCHMIDTschen Orthonormalisierungeverfahrens auf Punktmassenpotentiale 3.3.5. Anwendbarkeit des Algorithmus' auf andere Approximationsaufgaben 3.4. Darstellung des Normalpotentials durch Punktmassen 4. Numerische Realisierung des Algorithmus' 4.1. Simulation der zu approximierenden Randwerte 4.2. Praktische Bestimmung der Startwerte für die Punktmassenpositionen 4.3. Die Bestimmung der Massen für vorgegebene Orte 4.4. Die Verbesserung der Punktmassenpositionen ausgehend von Näherungswerten 4.4.1. Lösung des nichtlinearen Problems 4.4.2. Regularisierung 4.4.3. Berechnung der Zuschläge in sphärischen Koordinaten 4.5. Zur Berechnung von Modellen gleichmäßig verteilter Punktmassen 4.6. Maßnahmen zur Rechenzeiteinsparung 4.6.1. Reduzierung der Zahl der in jedem Schritt zu optimierenden Punktmassen 4.6.2. Reduzierung der Zahl der in jedem Schritt einbezogenen Randwerte 4.7. Der Algorithmus als Kernstück des Programms PUMA 4.7.1. Endgültige, praxisbezogene Formulierung des Algorithmus' 4.7.2. Möglichkeiten des Programms PUMA zur Berechnung von Punktmassenmodellen 5. Ableitung und Test von Punktmassenmodellen/Diskussion der Ergebnisse 5.1. Berechnung der Punktmassenmodelle 5.1.1. Welche Modelle wurden berechnet? 5.1.2. Numerische Stabilität der Lösungen 5.1.3. Verringerung der Zahl der verwendeten Randwerte 5.2. Approximationsgenauigkeit/Konvergenzgeschwindigkeit 5.2.1. Quasiorthogonalität und Einfluß des Parameters Nε 5.2.2. Vergleich der Approximation der beiden Sätze von Randwerten 5.2.3. Vergleich mit gleichverteilten Punktmassen und Kugelfunktionsentwicklung 5.3. Vergleich der Spektren von Punktmassenmodellen und approximiertem Modell GEM 10 5.3.1. Gesamtmasse und Kugelfunktionskoeffizienten niedrigen Grades 5.3.2. Vergleich der Gradvarianzen / die Spektren der Restfehler 5.4. Test der Punktmassenmodelle durch Satellitenbahnberechnung 6. Resümee Literaturverzeichnis
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 92
    Weitere Ausg.: Druckausgabe Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen mit optimierten Positionen
    Sprache: Deutsch
    Schlagwort(e): Electronic books ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    kobvindex_GFZ55283
    Umfang: 123 Seiten , Illustrationen , 30 cm
    Ausgabe: Als Manuskript gedruckt
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 86
    Inhalt: Nach einführenden Betrachtungen über die Definition der Zeiteinheit, die Bereitstellung von Zeitskalen und die dabei zu berücksichtigenden relativistischen Effekte werden im 2. Abschnitt die Anforderungen moderner geodätischer Meßverfahren an die Zeit- und Frequenzmaßtechnik abgeleitet. Das Prinzip dieser Verfahren besteht darin, Entfernungen aus der Messung von Signallaufzeiten bei bekannter Lichtgeschwindigkeit und Entfernungsänderungen z. B. über den Dopplereffekt aus Frequenzänderungen zu bestimmen. Dabei werden hohe Anforderungen an die Zeit- und Frequenzmeßtechnik gestellt. Die aus der Analyse dieser Verfahren abgeleiteten Werte sind in einer Tabelle zusammengefaßt worden. Die hohen Anforderungen und die zu erwartende Entwicklung weiterer Varianten geodätischer Meßverfahren waren Anlaß dafür, den Entwicklungsstand der Zeit- und Frequenzmeßtechnik sowie erkennbare Tendenzen der Weiterentwicklung grundlegend zu analysieren und darzustellen. Im 3. Abschnitt werden deshalb Frequenznormale und die Messung ihrer Instabilität, Verfahren zum Zeitskalenvergleich, Verfahren zur Übertragung von Normalfrequenzen sowie Verfahren zur Zeitintervallmessung untersucht. Der im 4. Abschnitt durchgeführte Vergleich mit den Anforderungen moderner geodätischer Meßverfahren zeigt, daß deren Leistungsfähigkeit durch den Stand der Zeit- und Frequenzmeßtechnik nicht beeinträchtigt wird.
    Anmerkung: MAB0014.001: SR 90.0917(86) , MAB0036: s , Gekürzte Fassung der am 19. September 1984 bei der Akadademie der Wissenschaften der DDR verteidigten Dissertation B , 1. Die Definition der Zeiteinheit und die Bereitstellung von Zeitskalen 1.1. Zeitpunkt und Zeitintervall 1.2. Definition der Zeiteinheit 1.3. Vergleich zwischen astronomischer und quantenphysikalischer Definition 1.4. Zeitskalen 1.4.1. Astronomische Zeitskalen 1.4.2. Atomzeitskalen 1.4.2.1. Internationale Atomzeit TAI 1.4.2.2. Koordinierte Weltzeit UTC 1.4.3. Normalzeit der DDR 1.4.4. Einfluß relativistischer Effekte auf Zeitskalen 2. Anforderungen moderner geodätischer Meßverfahren an die Zeit- und Frequenzmeßtechnik 2.1. Aufgaben der Geodäsie und ihre meßtechnische Lösung 2.2. Betrachtung der einzelnen Meßverfahren 2.2.1. Elektronische Verfahren zur terrestrischen Entfernungsmessung 2.2.1.1. Meßprinzip 2.2.1.1.1. Phasenmeßverfahren 2.2.1.1.2. Impulsmeßverfahren 2.2.1.2. Anforderungen an die Zeitintervall- und Frequenzmaßtechnik 2.2.2. Laserentfernungsmessung zu Satelliten 2.2.2.1. Meßprinzip 2.2.2.2. Forderungen an Zeitintervallmessung, Zeitpunktbestimmung und Frequenz 2.2.2.2.1. Zeitintervallmessung 2.2.2.2.2. Zeitpunktbestimmung 2.2.2.2.3. Frequenz 2.2.3. DOPPLER-Messungen zu Satelliten 2.2.3.1. Meßprinzip 2.2.3.2. Fehlereinfluß von Frequenz- und Zeitpunktmessung 2.2.4. Radiointerferometrie mit langer Basis (VLBI) 2.2.4.1. Meßprinzip 2.2.4.2. Anforderungen an Frequenzstabilität und Uhrensynchronisation 2.2.5. Satelliten-Radiointerferometrie 2.2.5.1. Das GPS-System als mögliche Basis 2.2.5.2. Meßverfahren zur Koordinaten- und Koordinatendifferenzbestimmung 2.2.5.2.1. Entfernungsmessung 2.2.5.2.2. DOPPLER-Verfahren 2.2.5.2.3. Interferometrische Verfahren 2.2.5.2.3.1. Direkte Verwendung der Satellitensignale 2.2.5.2.3.2. Verwendung zusätzlich ausgestrahlter kontinuierlicher Frequenzen 2.2.5.2.3.3. Verwendung des rekonstruierten Trägers 2.2.5.3. Vergleich der Leistungsfähigkeit der Meßverfahren 2.2.5.3.1. Positionsbestimmung 2.2.5.3.2. Basislinienbestimmung 2.2.5.4. Fehlereinfluß der Zeit- und Frequenznormale 2.2.5.4.1. Einfluß der Satellitenfrequenznormale 2.2.5.4.2. Einfluß der Empfängerfrequenznormale 2.2.6. Absolutwertbestimmung der Fallbeschleunigung mit Fall- und Wurfmethoden 2.2.6.1. Meßprinzip 2.2.6.2. Anforderungen an die Zeitintervalltechnik 2.3. Bedeutung der Meßgrößen Zeitpunkt, Zeitintervall und Frequenz in geodätischen Meßverfahren 2.4. Zusammmenstellung der Anforderungen moderner geodätischer Meßverfahren an die Messung von Zeitpunkt, Zeitintervall und Frequenz 3. Verfahren der Zeit- und Frequenzmaßtechnik zur Realisierung der Anforderungen moderner geodätischer Meßverfahren 3.1. Realisierung von Zeit- und Frequenznormalen 3.1.1. Quarzstabilisierte Frequenznormale 3.1.2. Atomfrequenznormale 3.1.2.1. Physikalisches Prinzip 3.1.2.1.1. Wechselwirkung zwischen Strahlung und Materie 3.1.2.1.2. Atomspektren und ZEEMAN-Effekt 3.1.2.2. Technische Realisierung 3.1.2.2.1. Prinzipielle Lösung 3.1.2.2.2. Praktische Ausführung 3.1.2.2.2.1. Cs-Resonator 3.1.2.2.2.2. H-Maser 3.1.2.2.2.3. Rb-Gaszelle 3.1.2.3. Grenzen der Leistungsfähigkeit gegenwärtiger Atomfrequenznormale 3.1.2.4. Tendenzen der Weiterentwicklung 3.1.2.4.1. Verbesserungen und neue Konzeptionen im Mikrowellenbereich 3.1.2.4.2. Neue Frequenznormale im optischen Bereich 3.1.2.4.3. Zusammenstellung der erreichten Leistungsparameter Absolutgenauigkeit und Stabilität 3.1.2.5. Metrologische Bedeutung der Atomfrequenznormale 3.1.3. Oszillatoren mit supraleitendem Resonator 3.1.4. Kriterien zur Kennzeichnung der Instabilität von Frequenznormalen 3.1.4.1. Modell für das Signal eines Oszillators 3.1.4.2. Kennzeichnung der Frequenzinstabilität im Zeitbereich 3.1.4.2.1. Wahre Varianz 3.1.4.2.2. Zwei-Proben-Varianz 3.1.4.3. Kennzeichnung der Frequenzinstabilität im Frequenzbereich 3.1.4.4. Zusammenhang zwischen den Maßen der Frequenzinstabilität im Zeit- und Frequenzbereich 3.1.4.5. Meßverfahren zur Bestimmung der Frequenzinstabilität 3.1.5. Fehlereinfluß der Frequenznormale bei der Approximation von Zeitskalen 3.2. Verfahren zur Verbreitung und zum Vergleich von Zeitskalen 3.2.1. Zeitzeichensendungen terrestrischer Sender in den verschiedenen Frequenzbereichen 3.2.1.1. Zeitzeichensendungen im Längstwellenbereich 3.2.1.2. Zeitzeichensendungen im Langwellenbereich 3.2.1.2.1. Sender mit kontinuierlicher Trägerwelle 3.2.1.2.2. Sender mit nichtkontinuierlichem Träger LORAN C 3.2.1.3. Zeitzeichensendungen im Kurzwellenbereich 3.2.2. Zeitskalenvergleich durch Atomuhrentransport 3.2.3. Verwendung von Fernsehsendern und Richtfunkstrecken 3.2.4. Satellitenverfahren 3.2.4.1. Einwegverfahren 3.2.4.1.1. Verwendung von Satelliten ohne Zeitnormale 3.2.4.1.2. Verwendung von Satelliten mit Zeitnormalen 3.2.4.2. Zweiwegverfahren 3.2.4.3. Zusammenstellung durchgeführter Satellitenexperimente 3.2.4.3.1. Einwegverfahren 3.2.4.3.2. Zweiwegverfahren 3.2.4.4. Zusammenfassung 3.3. Vergleich und Übertragung von Normalfrequenz 3.3.1. Normalfrequenzübertragung über Rundfunksender 3.3.2. Normalfrequenzübertragung über das Fernsehnetz 3.3.2.1. Verwendung der Zeilensynchronimpulse des Fernsehsignals 3.3.2.2. Normalfrequenzübertragung mittels Farbträgersubfrequenz bzw. Übertragung von 1-MHz-Schwingungen in Austastlücken 3.3.3. Normalfrequenzübertragung über Satelliten 3.3.4. Normalfrequenzvergleiche über Zeitimpulse 3.4. Verfahren zur Zeitintervallmessung 3.4.1. Erfassung zeitsignifikanter Punkte 3.4.2. Ausmessung eines definierten Zeitintervalls 3.4.3. Interpolationsverfahren zur Erhöhung der Auflösung 3.4.3.1. Digitale Interpolation 3.4.3.2. Analoge Interpolation 4. Zusammenfassende Darstellung von Stand und Entwicklungstendenzen der elektronischen Zeit- und Frequenzmeßtechnik 4.1. Frequenznormale 4.2. Internationale Zeitskalenvergleiche 4.3. Internationale Frequenzvergleiche 4.4. Territoriale Normalfrequenzbereitstellung 4.5. Messung kurzer Zeitintervalle 5. Einschätzung des Einflusses der Zeit- und Frequenzmeßtechnik auf die Leistungsfähigkeit moderner geodätischer Meßverfahren 6. Literaturverzeichnis
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 86
    Weitere Ausg.: Onlineausgabe Entwicklungsstand der Zeit- und Frequenzmeßtechnik und sein Einfluß auf die Leistungsfähigkeit moderner geodätischer Meßverfahren
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    kobvindex_GFZ55281
    Umfang: 111 Seiten , Illustrationen , 30 cm
    Ausgabe: Als Manuskript gedruckt
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 85
    Inhalt: Die Ausbreitung von Rayleighwellen wird für das Gebiet der DDR sowie seine nördliche, östliche und südliche Umgebung ausführlich untersucht. Es wird dabei zwischen Primäraffekten wie Dispersion und Sekundäreffekten wie Dämpfung, Erscheinungsformen höherer Moden, Reflexion an vertikalen Diskontinuitäten und Polarisationsanomalien unterschieden. Zunächst werden aber erst die Methoden der Seismogrammbearbeitung behandelt. Über bekannte Konzepte hinaus wird schließlich eine Methodik angewandt, die soweit wie möglich im Zeitbereich arbeitet, um auch bei Zwischenschritten noch eine Beurteilung durch den Seismologen zu ermöglichen. Zur Seismogrammbearbeitung gehören multiple Filterung, harmonische Analyse für eine Phasenbestimmung, Modenextraktion. Die Möglichkeiten einer digitalen Seismogrammkorrektur bezüglich der Parameter des aufzeichnenden Seismographen werden genutzt. Die meisten Schritte werden rekursiv ausgeführt und benötigen wenig Rechenzeit. Schließlich wird noch auf die Grundlagen der Inversion von Dispersionsergebnissen in Tiefenmodelle der Scherwellengeschwindigkeit eingegangen.
    Anmerkung: MAB0014.001: SR 90.0917(85) , MAB0036: s , Veränderte Fassung der am 6. November 1985 bei der Akademie der Wissenschaften der DDR verteidigten Dissertationen B , Zusammenfassung 1. Einleitung 2. Generalisierung der Dispersion von Rayleighwellen für das Gebiet der DDR und deren Umgebung 2.1. Möglichkeiten der Generalisierung von Oberflächenwellenbeobachtungen 2.2. Datenprozessing 2.2.1. Literaturüberblick 2.2.2. Eigene Methode der Datenbearbeitung 2.2.2.1. Fehlerkorrektur 2.2.2.2. Seismographenkorrektur 2.2.2.3. Butterworthfilter zur Zeitreihenbearbeitung 2.2.2.4. Zeitabhängige Filter 2.2.2.5. Bestimmung der Phasengeschwindigkeit 2.3. Inversion von Dispersionskurven 2.4. Beobachtung der Dispersion 2.4.1. Beschreibung der Beobachtungen 2.4.2. Norden und Süden der DDR 2.4.3. Erzgebirge (MOBR) 2.4.4. BRG - QED 2.4.5. Ostsee 2.4.6. Böhmisches Massiv 2.4.7. Dispersion zwischen MOX und WAR 2.4.8. Profillinie zwischen MOX und COP 2.4.9. Profil von Moxa nach Pulkovo (MOPU) 2.5. Generalisierende Betrachtung der Rayleighwellendispersion für Mittel-, Nord- und Osteuropa 2.5.1. Untersuchungsgebiet DDR 2.5.2. Mittel-, Nord- und Osteuropa 2.5.3. Dispersionsvergleich Europa - Antarktika 3. Dämpfung von Oberflächenwellen 3.1. Physikalische Grundlagen 3.2. State of art 3.3. Datenaufbereitung zur Dämpfungsbestimmung 3.4. Beobachtung der Dämpfung im Stationsnetz der DDR 3.4.1. Mittlere Dämpfung für das gesamte Gebiet DDR 3.4.2. Negative scheinbare Dämpfung 3.4.3. Hohe scheinbare Dämpfung, Anisotropie im Dreieck MOX - CLL - BRG 3.5. Dämpfung entlang ausgewählter Profile 3.5.1. Profil MOCO 3.5.2. Profil MOWA 4. Höhere Moden 4.1. Kanalwellen 4.2. Zur experimentellen Bestimmung der Phasengeschwindigkeitskurven höherer Moden 5. Reflexion von Oberflächenwellen 5.1. Aktueller Kenntnisstand 5.1.1. Theorie 5.1.2. Beobachtungsbeispiele 5.2. Erkennen von reflektierten Oberflächenwellen 5.2.1. Spektrale Auswirkungen 5.2.2. Autokorrelationsfunktion 5.2.3. Verschiedene Gruppengeschwindigkeitskurven auf Grund multipler Filterung 5.2.4. Extraktion einer einzelnen Wellengruppe 5.3. Geophysikalische Deutung 5.3.1. Reflektierende Diskontinuität 5.3.2. Schätzung des Reflexionskoeffizienten 5.4. Beispiele 5.4.1. Erdbeben 48 5.4.2. Erdbeben 50 5.4.3. Ereignis 18 5.4.4. Ereignis 23 5.4.5. Erdbeben 11 5.4.6. MOCO 3 5.5. Zielgerichtete Untersuchung einer bekannten Diskontinuität 6. Anomale Polarisation der Lovewellen, Anisotropie 6.1. Anisotropie und die Ausbreitung von seismischen Oberflächenwellen 6.2. Experimenteller Nachweis von Polarisationsunregelmäßigkeiten für Eurasien 7. Schlußfolgerungen für Erdkruste und oberen Erdmantel 7.1. Lithosphäre 7.2. Asthenosphäre Literatur Anhang
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 85
    Weitere Ausg.: Onlineausgabe Primär- und Sekundäreffekte bei der Ausbreitung seismischer Oberflächenwellen und ihre geophysikalischen Ursachen
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    kobvindex_GFZ107808
    Umfang: 85 Seiten , Karten, Fotos, Diagramme , 30 cm
    Ausgabe: Als Manuskript gedruckt
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 68
    Anmerkung: MAB0014.001: S 90.0917(68) , Bei der AdW der DDR am 30.11.1979 eingereichte, am 16.9.1980 öffentlich verteidigte, zur Erlangung des akademischen Grades Doktor eines Wissenschaftszweiges (Dr. rer. nat.) genehmigte Dissertation , Dissertation, Universität Potsdam, 1980 , 1. Einleitung 2. Aspekte der Bildwahrnehmung und der naturwissenschaftlichen Thematik für die interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralfotografien 2.1. Physikalische Aspekte der Bildwahrnehmung 2.1.1. Abbildung der Umwelt bei bilderzeugenden Fernerkundungsverfahren 2.1.2. Beschreibung der zweidimensionalen Bildfunktion von Schwarzweißbildern 2.1.3. Grundzüge der Bildfunktion von Farbbildern und Multispektralaufnahmen 2.2. Physiologisch-optische Aspekte der Bildwahrnehmung 2.2.1. Reizaufnahme und Reizverarbeitung im Auge 2.2.2. Physiologie der Farbwahrnehmung 2.2.2.1. Grundbegriffe der Farbvalenzmetrik 2.2.2.2. Die trichromatischen Farbmaßzahlen 2.2.2.3. Die geometrische Darstellung von Farben in der Farbvalenzmetrik 2.2.2.4. Grundbegriffe der empfindungsgemäßen Farbmetrik 2.2.3. Einfluß der Farbwahrnehmung auf die Bildinterpretation 2.3. Psychologische Aspekte der Bildwahrnehmung 2.4. Aspekte der naturwissenschaftlichen Thematik der Interpretation 2.5. Ableitung einer Aufgabenstellung zur interpretationsgerechten Aufbereitung der Multispektralinformation 3. Verfahren der digitalen und kombinierten digital-analogen Bildbearbeitung zur interpretationsgerechten Aufbereitung von MKF 6 - Multispektralfotografien 3.1. Grundlagen der Bildbearbeitung 3.1.1. Grundbegriffe der digitalen Bildbearbeitung 3.1.2. Analog-optische Bildbearbeitung mit Multispektralprojektoren 3.1.3. Kombinierte analog-optische Bildbearbeitung 3.2. Aufbereitung von MKF 6 - Multispektralfotografien zur Verarbeitung auf numerischen Rechenanlagen 3.3. Anwendung der Hauptachsentransformation zur Datenverdichtung bei MKF 6 - Multispektralaufnahmen 3.3.1. Mathematisch-physikalische Grundlagen der Hauptachsentransformation von multispektralen Abbildungen 3.3.2. Technische Realisierung der Hauptachsentransformation für Multispektraldaten 3.3.3. Beispiel zur Hauptachsentransformation von MKF 6 – Multispektralaufnahmen 3.4. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralaufnahmen durch lineare Grauwerttransformation im zweidimensionalen Merkmalsraum 3.4.1. Mathematisch-physikalische Grundlagen des Verfahrens 3.4.2. Technische Realisierung 3.5. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus MKF 6 - Multispektralaufnahmen unter Berücksichtigung der empfindungsgemäßen Farbmetrik 3.5.1. Mathematisch-physikalische Grundlagen des Verfahrens 3.5.1.1. Unabhängige Optimierung der Grauwertdifferenzierung in drei Komponenten mit anschließender Farbmischung im Multispektralprojektor 3.5.1.2. Optimierung der Farbdifferenzierung durch Egalisierung das zweidimensionalen Histogramms der Farbwertanteile 3.5.2. Programmtechnische Realisierung des Verfahrens 3.5.3. Vergleich mit einem bekannten ähnlichen Verfahren 3.6. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralaufnahmen durch unüberwachte Klassifizierung nach repräsentativen Objektklassen 3.6.1. Mathematisch- physikalische Grundlagen des Verfahrens 3.6.2. Programmtechnische Realisierung des Verfahrens 4. Untersuchungen zur Applikation der beschriebenen digitalanalogen Verfahren für die interpretationsgerechte Aufbereitung von Multispektralfotografien 4.1. Interpretationsgerechte Aufbereitung von Multispektralfotografien mit inhomogener Bildfunktion 4.1.1. Farbcodierung der Hauptkomponenten im Multispektralprojektor 4.1.2. Farbcodierung der linear transformierten Hauptkomponenten 4.1.3. Farboptimierung durch Egalisierung des Histogramms der Farbwertanteile 4.1.4. Aufbereitung von Teilaspekten der Bildfunktion durch unüberwachte Klassifizierung 4.2. Interpretationsgerechte Aufbereitung von Multispektralfotografien mit relativ homogener Bildfunktion 4.3. Prinzipielle Schlußfolgerungen zur Anwendung der beschriebenen Verfahren zur interpretationsgerechten Aufbereitung von Multispektralfotografien 5. Zusammenfassung und Schlußfolgerungen 6. Literaturverzeichnis 7. Verzeichnis der Beilagen
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 68
    Weitere Ausg.: Onlineausgabe Untersuchungen zur interpretationsgerechten Aufbereitung von Multispektralfotografien
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    UID:
    kobvindex_GFZ95102_2
    Umfang: 1 Online-Ressource (85 Seiten) , Karten, Fotos, Diagramme
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 68
    Anmerkung: Bei der AdW der DDR am 30.11.1979 eingereichte, am 16.9.1980 öffentlich verteidigte, zur Erlangung des akademischen Grades Doktor eines Wissenschaftszweiges (Dr. rer. nat.) genehmigte Dissertation , Dissertation, Universität Potsdam, 1980 , 1. Einleitung 2. Aspekte der Bildwahrnehmung und der naturwissenschaftlichen Thematik für die interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralfotografien 2.1. Physikalische Aspekte der Bildwahrnehmung 2.1.1. Abbildung der Umwelt bei bilderzeugenden Fernerkundungsverfahren 2.1.2. Beschreibung der zweidimensionalen Bildfunktion von Schwarzweißbildern 2.1.3. Grundzüge der Bildfunktion von Farbbildern und Multispektralaufnahmen 2.2. Physiologisch-optische Aspekte der Bildwahrnehmung 2.2.1. Reizaufnahme und Reizverarbeitung im Auge 2.2.2. Physiologie der Farbwahrnehmung 2.2.2.1. Grundbegriffe der Farbvalenzmetrik 2.2.2.2. Die trichromatischen Farbmaßzahlen 2.2.2.3. Die geometrische Darstellung von Farben in der Farbvalenzmetrik 2.2.2.4. Grundbegriffe der empfindungsgemäßen Farbmetrik 2.2.3. Einfluß der Farbwahrnehmung auf die Bildinterpretation 2.3. Psychologische Aspekte der Bildwahrnehmung 2.4. Aspekte der naturwissenschaftlichen Thematik der Interpretation 2.5. Ableitung einer Aufgabenstellung zur interpretationsgerechten Aufbereitung der Multispektralinformation 3. Verfahren der digitalen und kombinierten digital-analogen Bildbearbeitung zur interpretationsgerechten Aufbereitung von MKF 6 - Multispektralfotografien 3.1. Grundlagen der Bildbearbeitung 3.1.1. Grundbegriffe der digitalen Bildbearbeitung 3.1.2. Analog-optische Bildbearbeitung mit Multispektralprojektoren 3.1.3. Kombinierte analog-optische Bildbearbeitung 3.2. Aufbereitung von MKF 6 - Multispektralfotografien zur Verarbeitung auf numerischen Rechenanlagen 3.3. Anwendung der Hauptachsentransformation zur Datenverdichtung bei MKF 6 - Multispektralaufnahmen 3.3.1. Mathematisch-physikalische Grundlagen der Hauptachsentransformation von multispektralen Abbildungen 3.3.2. Technische Realisierung der Hauptachsentransformation für Multispektraldaten 3.3.3. Beispiel zur Hauptachsentransformation von MKF 6 – Multispektralaufnahmen 3.4. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralaufnahmen durch lineare Grauwerttransformation im zweidimensionalen Merkmalsraum 3.4.1. Mathematisch-physikalische Grundlagen des Verfahrens 3.4.2. Technische Realisierung 3.5. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus MKF 6 - Multispektralaufnahmen unter Berücksichtigung der empfindungsgemäßen Farbmetrik 3.5.1. Mathematisch-physikalische Grundlagen des Verfahrens 3.5.1.1. Unabhängige Optimierung der Grauwertdifferenzierung in drei Komponenten mit anschließender Farbmischung im Multispektralprojektor 3.5.1.2. Optimierung der Farbdifferenzierung durch Egalisierung das zweidimensionalen Histogramms der Farbwertanteile 3.5.2. Programmtechnische Realisierung des Verfahrens 3.5.3. Vergleich mit einem bekannten ähnlichen Verfahren 3.6. Interpretationsgerechte Aufbereitung von farbigen Abbildungen aus Multispektralaufnahmen durch unüberwachte Klassifizierung nach repräsentativen Objektklassen 3.6.1. Mathematisch- physikalische Grundlagen des Verfahrens 3.6.2. Programmtechnische Realisierung des Verfahrens 4. Untersuchungen zur Applikation der beschriebenen digitalanalogen Verfahren für die interpretationsgerechte Aufbereitung von Multispektralfotografien 4.1. Interpretationsgerechte Aufbereitung von Multispektralfotografien mit inhomogener Bildfunktion 4.1.1. Farbcodierung der Hauptkomponenten im Multispektralprojektor 4.1.2. Farbcodierung der linear transformierten Hauptkomponenten 4.1.3. Farboptimierung durch Egalisierung des Histogramms der Farbwertanteile 4.1.4. Aufbereitung von Teilaspekten der Bildfunktion durch unüberwachte Klassifizierung 4.2. Interpretationsgerechte Aufbereitung von Multispektralfotografien mit relativ homogener Bildfunktion 4.3. Prinzipielle Schlußfolgerungen zur Anwendung der beschriebenen Verfahren zur interpretationsgerechten Aufbereitung von Multispektralfotografien 5. Zusammenfassung und Schlußfolgerungen 6. Literaturverzeichnis 7. Verzeichnis der Beilagen
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 68
    Weitere Ausg.: Druckausgabe Untersuchungen zur interpretationsgerechten Aufbereitung von Multispektralfotografien
    Sprache: Deutsch
    Schlagwort(e): Electronic books ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    kobvindex_GFZ95079_2
    Umfang: 1 Online-Ressource (80 Seiten) , Diagramme, Tabellen, Illustrationen
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 56
    Inhalt: Das Ziel der vorliegenden Arbeit ist die Untersuchung der photoelektrischen Registrierung von Sterndurchgangszeiten, um einen Beitrag zur Entwicklung des photoelektrischen Zenitrohrs (PEZR) zu leisten. Nach Hinweisen zur Zielstellung werden zunächst in einem Überblick verschiedene bisher angewendete photoelektrische Meßverfahren vorgestellt und dann das ausgewählte Meßverfahren sowie die Entwicklung der Versuchsapparatur beschrieben. Daneben wird das Auswerteverfahren der registrierten Meßwerte mit einer EDVA zur Ermittlung der Sterndurchgangszeit vorgelegt. Anschließend werden die Reichweite und die Genauigkeit der entwickelten Versuchsapparatur abgeschätzt. Weiter werden die Ergebnisse sowie die Erfahrungen aus der Erprobung in 5 Beobachtungsserien mit 5 verschiedenen Gittern und 870 Sterndurchgangsbeobachtungen dargestellt. (Bei einem Objektiv mit der effektiven Öffnung von 16,7 cm und der Brennweite von 100 cm waren die Sterne bis zur Größenklasse 10 zu beobachten, und es wurden durchschnittliche Meßfehler in 2 Koordinaten von 0,082" erreicht.) Zum Schluß erfolgen die Einschätzung und die Diskussion von Verbesserungsmöglichkeiten für den endgültigen Einsatz am PEZR.
    Anmerkung: Vorwort Zusammenfassungen 1. Einleitung 2. Überblick über verschiedene photoelektrische Verfahren 3. Beschreibung des gewählten Meßverfahrens 3.1. Blockschaltbild 3.2. Funktionsprinzip 3.3. Gründe für die Wahl des Meßprinzips 4. Entwicklung der Versuchsapparatur 4.1. Mechanisch-optischer Teil 4.1.1. Fernrohr 4.1.2. Größe der Sternabbildung 4.1.3. Gitter 4.2. Elektronischer Teil 4.2.1. Lichtempfänger und Verstärker 4.2.2. Zeitgebersystem 4.2.3. Registriersystem 4.2.4. Fernbedienung 5. Auswerteverfahren zur Ermittlung der Sterndurchgangszeit 5.1. Ermittlung der Sterndurchgangszeit für jeden Spalt 5.1.1. Variante 1 5.1.2. Variante 2 5.2. Ermittlung der Sterndurchgangszeit für das ganze Gitter 6. Reichweitenabschätzung 6.1. Größe des photoelektrischen Stroms 6.2. Anzahl der zu zählenden Photoelektronen 6.3. Begrenzung der Helligkeit des Himmelshintergrundes 7. Fehlerabschätzung 7.1. Ableitung der Formeln aus dem Auswerteverfahren 7.2. Richtungsszintillation 7.3. Helligkeitsszintillation 7.4. Rauschen 7.5. Gittergenauigkeit 7.6. Diskrete Registrierung 7.7. Zusammenfassung 8. Erprobung und Untersuchung der Versuchsapparatur 8.1. Messung des Dunkelstroms des SEV 8.2. Festlegung der Diskriminatorschwelle 8.3. Durchführung der Sterndurchgangsbeobachtungen 8.4. Untersuchungen und Analysen des Beobachtungsmaterials 8.4.1. Differenzkurve 8.4.2. Auswertung mit der EDVA Robotron 300 8.4.3. Reichweite 8.4.4. Meßfehler 8.4.5. Fehlereinfluß der diskreten Registrierung 9. Zum Einsatz am photoelektrischen Zenitrohr 9.1. Mechanisch-optischer Teil 9.2. Elektronischer Teil 10. Zusammenfassung und Schlußfolgerungen Literatur Anhang
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 56
    Weitere Ausg.: Druckausgabe Untersuchungen zur photoelektrischen Registrierung von Sterndurchgangszeiten
    Sprache: Deutsch
    Schlagwort(e): Hochschulschrift ; Electronic books
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    kobvindex_GFZ95185_2
    Umfang: 1 Online-Ressource (123 Seiten) , Illustrationen
    ISSN: 0514-8790
    Serie: Veröffentlichungen des Zentralinstituts Physik der Erde Nr. 86
    Inhalt: Nach einführenden Betrachtungen über die Definition der Zeiteinheit, die Bereitstellung von Zeitskalen und die dabei zu berücksichtigenden relativistischen Effekte werden im 2. Abschnitt die Anforderungen moderner geodätischer Meßverfahren an die Zeit- und Frequenzmaßtechnik abgeleitet. Das Prinzip dieser Verfahren besteht darin, Entfernungen aus der Messung von Signallaufzeiten bei bekannter Lichtgeschwindigkeit und Entfernungsänderungen z. B. über den Dopplereffekt aus Frequenzänderungen zu bestimmen. Dabei werden hohe Anforderungen an die Zeit- und Frequenzmeßtechnik gestellt. Die aus der Analyse dieser Verfahren abgeleiteten Werte sind in einer Tabelle zusammengefaßt worden. Die hohen Anforderungen und die zu erwartende Entwicklung weiterer Varianten geodätischer Meßverfahren waren Anlaß dafür, den Entwicklungsstand der Zeit- und Frequenzmeßtechnik sowie erkennbare Tendenzen der Weiterentwicklung grundlegend zu analysieren und darzustellen. Im 3. Abschnitt werden deshalb Frequenznormale und die Messung ihrer Instabilität, Verfahren zum Zeitskalenvergleich, Verfahren zur Übertragung von Normalfrequenzen sowie Verfahren zur Zeitintervallmessung untersucht. Der im 4. Abschnitt durchgeführte Vergleich mit den Anforderungen moderner geodätischer Meßverfahren zeigt, daß deren Leistungsfähigkeit durch den Stand der Zeit- und Frequenzmeßtechnik nicht beeinträchtigt wird.
    Anmerkung: Gekürzte Fassung der am 19. September 1984 bei der Akadademie der Wissenschaften der DDR verteidigten Dissertation B , 1. Die Definition der Zeiteinheit und die Bereitstellung von Zeitskalen 1.1. Zeitpunkt und Zeitintervall 1.2. Definition der Zeiteinheit 1.3. Vergleich zwischen astronomischer und quantenphysikalischer Definition 1.4. Zeitskalen 1.4.1. Astronomische Zeitskalen 1.4.2. Atomzeitskalen 1.4.2.1. Internationale Atomzeit TAI 1.4.2.2. Koordinierte Weltzeit UTC 1.4.3. Normalzeit der DDR 1.4.4. Einfluß relativistischer Effekte auf Zeitskalen 2. Anforderungen moderner geodätischer Meßverfahren an die Zeit- und Frequenzmeßtechnik 2.1. Aufgaben der Geodäsie und ihre meßtechnische Lösung 2.2. Betrachtung der einzelnen Meßverfahren 2.2.1. Elektronische Verfahren zur terrestrischen Entfernungsmessung 2.2.1.1. Meßprinzip 2.2.1.1.1. Phasenmeßverfahren 2.2.1.1.2. Impulsmeßverfahren 2.2.1.2. Anforderungen an die Zeitintervall- und Frequenzmaßtechnik 2.2.2. Laserentfernungsmessung zu Satelliten 2.2.2.1. Meßprinzip 2.2.2.2. Forderungen an Zeitintervallmessung, Zeitpunktbestimmung und Frequenz 2.2.2.2.1. Zeitintervallmessung 2.2.2.2.2. Zeitpunktbestimmung 2.2.2.2.3. Frequenz 2.2.3. DOPPLER-Messungen zu Satelliten 2.2.3.1. Meßprinzip 2.2.3.2. Fehlereinfluß von Frequenz- und Zeitpunktmessung 2.2.4. Radiointerferometrie mit langer Basis (VLBI) 2.2.4.1. Meßprinzip 2.2.4.2. Anforderungen an Frequenzstabilität und Uhrensynchronisation 2.2.5. Satelliten-Radiointerferometrie 2.2.5.1. Das GPS-System als mögliche Basis 2.2.5.2. Meßverfahren zur Koordinaten- und Koordinatendifferenzbestimmung 2.2.5.2.1. Entfernungsmessung 2.2.5.2.2. DOPPLER-Verfahren 2.2.5.2.3. Interferometrische Verfahren 2.2.5.2.3.1. Direkte Verwendung der Satellitensignale 2.2.5.2.3.2. Verwendung zusätzlich ausgestrahlter kontinuierlicher Frequenzen 2.2.5.2.3.3. Verwendung des rekonstruierten Trägers 2.2.5.3. Vergleich der Leistungsfähigkeit der Meßverfahren 2.2.5.3.1. Positionsbestimmung 2.2.5.3.2. Basislinienbestimmung 2.2.5.4. Fehlereinfluß der Zeit- und Frequenznormale 2.2.5.4.1. Einfluß der Satellitenfrequenznormale 2.2.5.4.2. Einfluß der Empfängerfrequenznormale 2.2.6. Absolutwertbestimmung der Fallbeschleunigung mit Fall- und Wurfmethoden 2.2.6.1. Meßprinzip 2.2.6.2. Anforderungen an die Zeitintervalltechnik 2.3. Bedeutung der Meßgrößen Zeitpunkt, Zeitintervall und Frequenz in geodätischen Meßverfahren 2.4. Zusammmenstellung der Anforderungen moderner geodätischer Meßverfahren an die Messung von Zeitpunkt, Zeitintervall und Frequenz 3. Verfahren der Zeit- und Frequenzmaßtechnik zur Realisierung der Anforderungen moderner geodätischer Meßverfahren 3.1. Realisierung von Zeit- und Frequenznormalen 3.1.1. Quarzstabilisierte Frequenznormale 3.1.2. Atomfrequenznormale 3.1.2.1. Physikalisches Prinzip 3.1.2.1.1. Wechselwirkung zwischen Strahlung und Materie 3.1.2.1.2. Atomspektren und ZEEMAN-Effekt 3.1.2.2. Technische Realisierung 3.1.2.2.1. Prinzipielle Lösung 3.1.2.2.2. Praktische Ausführung 3.1.2.2.2.1. Cs-Resonator 3.1.2.2.2.2. H-Maser 3.1.2.2.2.3. Rb-Gaszelle 3.1.2.3. Grenzen der Leistungsfähigkeit gegenwärtiger Atomfrequenznormale 3.1.2.4. Tendenzen der Weiterentwicklung 3.1.2.4.1. Verbesserungen und neue Konzeptionen im Mikrowellenbereich 3.1.2.4.2. Neue Frequenznormale im optischen Bereich 3.1.2.4.3. Zusammenstellung der erreichten Leistungsparameter Absolutgenauigkeit und Stabilität 3.1.2.5. Metrologische Bedeutung der Atomfrequenznormale 3.1.3. Oszillatoren mit supraleitendem Resonator 3.1.4. Kriterien zur Kennzeichnung der Instabilität von Frequenznormalen 3.1.4.1. Modell für das Signal eines Oszillators 3.1.4.2. Kennzeichnung der Frequenzinstabilität im Zeitbereich 3.1.4.2.1. Wahre Varianz 3.1.4.2.2. Zwei-Proben-Varianz 3.1.4.3. Kennzeichnung der Frequenzinstabilität im Frequenzbereich 3.1.4.4. Zusammenhang zwischen den Maßen der Frequenzinstabilität im Zeit- und Frequenzbereich 3.1.4.5. Meßverfahren zur Bestimmung der Frequenzinstabilität 3.1.5. Fehlereinfluß der Frequenznormale bei der Approximation von Zeitskalen 3.2. Verfahren zur Verbreitung und zum Vergleich von Zeitskalen 3.2.1. Zeitzeichensendungen terrestrischer Sender in den verschiedenen Frequenzbereichen 3.2.1.1. Zeitzeichensendungen im Längstwellenbereich 3.2.1.2. Zeitzeichensendungen im Langwellenbereich 3.2.1.2.1. Sender mit kontinuierlicher Trägerwelle 3.2.1.2.2. Sender mit nichtkontinuierlichem Träger LORAN C 3.2.1.3. Zeitzeichensendungen im Kurzwellenbereich 3.2.2. Zeitskalenvergleich durch Atomuhrentransport 3.2.3. Verwendung von Fernsehsendern und Richtfunkstrecken 3.2.4. Satellitenverfahren 3.2.4.1. Einwegverfahren 3.2.4.1.1. Verwendung von Satelliten ohne Zeitnormale 3.2.4.1.2. Verwendung von Satelliten mit Zeitnormalen 3.2.4.2. Zweiwegverfahren 3.2.4.3. Zusammenstellung durchgeführter Satellitenexperimente 3.2.4.3.1. Einwegverfahren 3.2.4.3.2. Zweiwegverfahren 3.2.4.4. Zusammenfassung 3.3. Vergleich und Übertragung von Normalfrequenz 3.3.1. Normalfrequenzübertragung über Rundfunksender 3.3.2. Normalfrequenzübertragung über das Fernsehnetz 3.3.2.1. Verwendung der Zeilensynchronimpulse des Fernsehsignals 3.3.2.2. Normalfrequenzübertragung mittels Farbträgersubfrequenz bzw. Übertragung von 1-MHz-Schwingungen in Austastlücken 3.3.3. Normalfrequenzübertragung über Satelliten 3.3.4. Normalfrequenzvergleiche über Zeitimpulse 3.4. Verfahren zur Zeitintervallmessung 3.4.1. Erfassung zeitsignifikanter Punkte 3.4.2. Ausmessung eines definierten Zeitintervalls 3.4.3. Interpolationsverfahren zur Erhöhung der Auflösung 3.4.3.1. Digitale Interpolation 3.4.3.2. Analoge Interpolation 4. Zusammenfassende Darstellung von Stand und Entwicklungstendenzen der elektronischen Zeit- und Frequenzmeßtechnik 4.1. Frequenznormale 4.2. Internationale Zeitskalenvergleiche 4.3. Internationale Frequenzvergleiche 4.4. Territoriale Normalfrequenzbereitstellung 4.5. Messung kurzer Zeitintervalle 5. Einschätzung des Einflusses der Zeit- und Frequenzmeßtechnik auf die Leistungsfähigkeit moderner geodätischer Meßverfahren 6. Literaturverzeichnis
    In: Veröffentlichungen des Zentralinstituts Physik der Erde, Nr. 86
    Weitere Ausg.: Druckausgabe Entwicklungsstand der Zeit- und Frequenzmeßtechnik und sein Einfluß auf die Leistungsfähigkeit moderner geodätischer Meßverfahren
    Sprache: Deutsch
    Schlagwort(e): Electronic books ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz