Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    AutanaBooks S.A.S ; 2020
    In:  Universidad Ciencia y Tecnología Vol. 24, No. 105 ( 2020-10-11), p. 63-71
    In: Universidad Ciencia y Tecnología, AutanaBooks S.A.S, Vol. 24, No. 105 ( 2020-10-11), p. 63-71
    Abstract: Estudios experimentales y numéricos han centrado el interés en el campo de flujo con superficies de paredes dentadas y cavidades, donde la turbulencia del flujo son captadas en imágenes con la técnica Schlieren y recreadas con códigos computacionales. En el presente trabajo, se realiza un estudio numérico para el flujo de aire en un ducto recto con paredes dentadas para seis casos de presión. El flujo se simuló para un dominio computacional 2D con el código ANSYS-Fluent, para lo cual se empleó el modelo RANS en conjunto con el modelo de turbulencia de Menter. Se obtuvieron los campos de número de Mach, velocidad, presión y temperatura con presencia de remolinos y ondas de choque. En ciertas regiones el flujo presentó desviaciones al chocar con las esquinas de los dientes, por lo cual originó fluctuaciones inducidas de los parámetros termodinámicos aguas abajo y hacia la región del centro; en los espacios entre dientes se presentó remolinos; al final del último diente se presentó ondas de choque oblicuas. Se concluye que la sección dentada incrementa la turbulencia e influye a que la velocidad del flujo tenga un incremento escalonado en régimen transónico. Palabras Clave: ducto, flujo de aire, fluctuación, onda de choque, pared dentada, simulación. Referencias [1]J. Blazek, Computational fluid dynamics: principles and applications. Butterworth- Heinemann, 2015. [2]B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo, B. van Wachem, y L. Hellström, Computational Fluid Dynamics Engineers. Cambridge University Press, 2012. [3]T. V. Karman, “The fundamentals of the statistical theory of turbulence,” Journal of the Aeronautical Sciences, vol. 4, no. 4, pp. 131–138, 1937. doi: 10.2514/8.350. [4]F. White, Viscous fluid flow. McGraw-Hill Education, 2005. [5]H. Schlichting, Boundary-layer theory. McGraw-Hill classic textbook reissue series, 2016. [6]J. D. Anderson, Fundamentals of aerodynamics. McGraw-Hill series in aeronautical and aerospace engineering, 2017. [7]D. C. Wilcox, Turbulence modeling for CFD. DCW Industries, 2006. [8]P. Krehl y S. Engemann, “August toepler — the first who visualized shock waves,” Shock Waves, vol. 5, no. 1, pp. 1–18, Jun 1995. doi: 10.1007/BF02425031. [9]G. S. Settles, “Toma ultrarrápida de imágenes de ondas de choque, explosiones y disparos,” Revista Investigación y Ciencia, pp. 74-83, May. 2006. https://www.investigacionyciencia.es [10]H. Hirahara, M. Kawahashi, M. U, Khan y K. Hourigan, “Experimental investigation of fluid dynamic instability in a transonic cavity flow,” Experimental Thermal and Fluid Science, 31, pp. 333–347, 2007. doi: 10.1016/j.expthermflusci.2006.05.007. [11]S. L. Tolentino, S. Caraballo, J. Toledo, J. Mírez y C. Torres, “Oscilaciones de la velocidad del flujo en un ducto recto con cavidades rectangulares,” XVI Jornadas de Investigación 2018, UNEXPO Puerto Ordaz, Venezuela, pp. 34-39, 2018. [12]S. Jeyakumar, K. A. Yuvaraj, K. Jayaraman, F. Cardona y M. T. Sultan, “Effect of cavity fore wall modifications in supersonic flow,” Conference, Materials Science and Engineering, 152, pp. 1-7, 2016. doi: 10.1088/1757-899X/152/1/012002. [13]S. L. Tolentino and S. Caraballo, “Estudio del flujo de aire en un conducto recto con pared dentada,” XIV Jornadas de Investigación 2016, UNEXPO Puerto Ordaz, Venezuela, pp. 203-210, 2016. [14]F. White, Fluids Mechanics. McGraw-Hill Education, 2016. [15]F. R. Menter, “Two equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. doi: 10.2514/3.12149. [16]S. L. B. Tolentino Masgo, “Evaluación de modelos de turbulencia para el flujo de aire en una tobera plana,” Revista Ingenius, no. 22, pp. 25-37, Julio-Diciembre 2019. doi: 10.17163/ings.n22.2019.03. [17]S. L. B. Tolentino Masgo, “Evaluación de modelos de turbulencia para el flujo de aire en un difusor transónico,” Revista Politécnica, vol. 45, no. 1, pp. 25-38, 2020. doi: 10.3333/rp.vol45n1.03.
    Type of Medium: Online Resource
    ISSN: 2542-3401 , 1316-4821
    Language: Unknown
    Publisher: AutanaBooks S.A.S
    Publication Date: 2020
    detail.hit.zdb_id: 2558211-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages