Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    UID:
    almahu_9949576439102882
    Umfang: 1 online resource (627 pages)
    Ausgabe: 1st ed.
    ISBN: 9789819925322
    Serie: Lecture Notes in Civil Engineering Series ; v.327
    Anmerkung: Intro -- Preface -- Contents -- Study on the Influence of Sand Mining in the Channel of Sima Bend in Yangzhong of the Yangtze River -- 1 Introduction -- 2 Overview of Research Area -- 2.1 River Profile -- 2.2 Project Overview -- 3 Numerical Simulation -- 3.1 Boundary Conditions -- 3.2 Numerical Basic Equations -- 3.3 Numerical Calculation Method -- 3.4 Calculation Range and Grid -- 4 Mathematical Model Validation -- 4.1 Verification of Flow Velocity Processes and Cross-Sectional Flow Distribution -- 5 Analysis of the Impact of Sand Mining Projects on River Flows -- 5.1 Analysis of Plane Flow Velocity Field and Flow Pattern Changes -- 5.2 Analysis of Changes in the Velocity Field and Flow Regime -- 6 Conclusion -- References -- Study on Fatigue Performance of Typical Fatigue Detail in Orthotropic Steel Deck -- 1 Introduction -- 2 Field Monitoring -- 2.1 Measuring Points -- 2.2 Stress Time History -- 3 Analysis of Measurement Results -- 3.1 Fatigue Stress Amplitude -- 3.2 Fatigue Damage -- 3.3 Conclusions -- References -- Comfort Behavior of High Performance Floor Based on Single-Jump Excitation Mode Considering Time-Space Effect -- 1 Introduction -- 2 Establishing the Differential Equations -- 2.1 Improved Single-Jump Excitation Model -- 2.2 Governing Differential Equation -- 2.3 Dirac Delta Functions and Its Boundary Conditions -- 2.4 Closed Form Solutions -- 3 Verification of the Experimental Method -- 3.1 Model Design -- 3.2 Test Set-Up and Items -- 3.3 Calculation and Verification -- 3.4 Spatial and Temporal Distribution Characteristics -- 3.5 Parameter Analysis -- 4 Conclusion -- References -- Study on High Temperature Performance of Asphalt Mixture and Correlation of Its Evaluation Indexes -- 1 Introduction -- 2 Materials and Methods -- 2.1 Materials -- 2.2 Grading Design -- 2.3 Test Method -- 3 Results and Discussion. , 3.1 High Temperature Rutting Test -- 3.2 High Temperature Shear Resistance Test -- 3.3 Correlation Analysis -- 4 Conclusion -- References -- Cases Study on Foundation Pit Design in Complex Environment of Urban Core Area -- 1 Introduction -- 2 Engineering Situation -- 2.1 Engineering Background -- 2.2 General Situation of Engineering Geology and Hydrogeologic Situation -- 3 General Situation of Foundation Pit Design -- 3.1 Description -- 3.2 Summaries -- 4 Assessment Model of Surrounding Environment -- 4.1 Parameters Description -- 4.2 Model Framework Description -- 4.3 Results -- 5 Conclusions -- References -- Investigation on Contact Force for Asphalt Mixture During Compaction Using DEM -- 1 Introduction -- 2 Materials and DEM Compaction Model -- 2.1 Materials -- 2.2 Experimental Tests -- 2.3 DEM Compaction Model -- 3 Results and Discussion -- 3.1 Contact Force Distribution Law -- 3.2 Contact Force Distribution Variability of Two-dimensional Section -- 4 Conclusions -- References -- Research on the Application of Small Caliber Pilot Jacking Method Under Silt Geology -- 1 Introduction -- 2 Principle of Micro-slit Pilot Roof -- 3 Construction Design of Small Diameter Pilot Top Pulling Method -- 3.1 Selection of Key Technical Parameters -- 3.2 Construction Process of Pilot Top Pulling Method -- 3.3 The Primary Process Design -- 3.4 Quality, Safety and Environmental Measures -- 3.5 Process Characteristics -- 4 Engineering Case Study -- 4.1 Project Overview -- 4.2 Calculation of Maximum Mud Pressure and Nose Pulling Force -- 4.3 Analysis of Economic Benefits -- 5 Conclusions -- References -- Detailed Analysis of Shrinkage and Creep Effect of Concrete in Prestressed Box Girder Bridge -- 1 Introduction -- 2 Prediction Model of Concrete Shrinkage and Creep -- 2.1 CEB-FIP Series Forecasting Model -- 2.2 ACI209 Series Forecasting Model. , 2.3 B3 Prediction Model -- 2.4 GL2000 Prediction Model -- 3 Comparison of Prediction Models -- 3.1 Calculation Method -- 3.2 Finite Element Model -- 3.3 Comparison of Calculated Results and Measured Results -- 4 Fine Analysis of Shrinkage Creep Deformation of Concrete Box Girder -- 4.1 MIDAS/civil Beam Element Model -- 4.2 ANSYS Solid Model without Considering the Influence of Prestressed Tendon Relaxation -- 4.3 ANSYS Solid Model Considering the Influence of Prestressed Tendon Relaxation -- 4.4 Comparison of Calculated Values and Experimental Values of Three Models -- 5 Detailed Analysis of a Prestressed Concrete Continuous Rigid Frame Bridge -- 5.1 Bridge Overview -- 5.2 Finite Element Model -- 5.3 Deflection Caused by Shrinkage and Creep -- 5.4 Shrinkage Creep Stress -- 5.5 Prestress Loss -- 6 Summary -- References -- Research on Carbon Footprint Calculation and Evaluation in Assembled Building Phase -- 1 Introduction -- 2 Construction of Carbon Footprint Model for Assembled Building Process -- 2.1 System Boundary -- 2.2 Analysis on Consumption of Prefabricated Buildings -- 2.3 Carbon Footprint Calculation Model for Prefabricated Buildings -- 3 Carbon Footprint Factor Analysis -- 3.1 Energy Carbon Footprint Factor -- 3.2 Material Carbon Footprint Factor -- 3.3 Carbon Footprint Factor of Transport Machinery -- 3.4 Carbon Footprint Factor of Construction Machinery -- 4 Case Analysis -- 4.1 Project Overview -- 4.2 Carbon Footprint Calculation -- 4.3 Comparative Analysis of Carbon Footprint Concentration -- 5 Conclusion -- References -- Numerical Simulation on Smoke Control for Extra-Long Tunnel Fires -- 1 Introduction -- 2 Method -- 2.1 Physical Model -- 2.2 Fire Scenarios -- 2.3 Governing Equations -- 2.4 Boundary Condition Setting -- 2.5 Grid Independence Test -- 2.6 Working Conditions Setting -- 3 Results and Discussion. , 3.1 Fire Source Located in Region A -- 3.2 Fire Source Located in Region B -- 4 Conclusion -- References -- Surface Vibration of Throw-Type Blast in an Open-Pit Mine -- 1 Introduction -- 2 Engineering Condition -- 3 Materials and Methods -- 3.1 Experiment Instrument -- 3.2 The Blasting Site -- 3.3 The Arrangement of Measured Points -- 4 Result and Discussion -- 4.1 Monitoring Results of Throwing Blasting Vibration -- 4.2 Fourier Transformation -- 5 Conclusion -- References -- Study on Failure Process of Freeze-Thaw Fractured Rock Under Multistage Cyclic Loads -- 1 Introduction -- 2 Model and Test Scheme -- 2.1 Model Establishment -- 2.2 Simulation Scheme -- 3 Analysis of Numerical Calculation Results -- 3.1 Analysis of NFG-1 Simulation Results -- 3.2 Analysis of NFG-33 Simulation Results -- 4 Conclusion -- References -- Optimization Design of Sand and Loess High Slope Based on Combination of Wide and Narrow Platfom--A Case Study of a High Slope in Yulin City -- 1 Introduction -- 2 Profiles -- 2.1 Study Area Profile -- 2.2 Side Slope Profile -- 3 Optimal Design of Scour Resistance Based on Single-stage Slope -- 4 Slope Water Infiltration Analysis -- 4.1 Slope Soil Force Analysis -- 4.2 Parameter Selection -- 4.3 Single-stage Slope Scour Analysis -- 5 Optimized Slope Design Based on Overall Stability -- 5.1 Geometric Models -- 5.2 Boundary Model -- 5.3 Analysis of Results -- 6 Conclusions -- References -- Key Construction and Control Technology of Long Span Self-anchored Suspension Bridge with Cable Before Beam -- 1 Introduction -- 2 Engineering Situation -- 3 Overall Construction Technology of "Cable before Beam" -- 4 Key Construction Technology of "Cable Before Beam" -- 4.1 Permanent-Temporary Combined Temporary Anchoring System -- 4.2 Key Technology of Reverse Lifting Construction -- 5 Key Control Technology of "Cable Before Beam". , 5.1 Consolidating the Steel Beam of the Anchorage Section with the Auxiliary Pier -- 5.2 The Temperature Weld and the System Conversion -- 5.3 Main Cable Slip Control and Cable Conduit Collision -- 6 Conclusion -- References -- Numerical Simulation for the Dynamic Response of Step Topography Subjected to Blasting Load -- 1 Introduction -- 2 Numerical Model -- 2.1 Blasting Load -- 2.2 FLAC2D Calculation Model -- 3 Results and Discussion -- 3.1 Amplification Effect of Step Topography -- 3.2 Vibration Distribution on Step Surface -- 3.3 Frequency Variation of Blasting Vibration Wave -- 4 Conclusion -- References -- Study on the Calculation Mode of Rod Piece Reliability -- 1 Introduction -- 2 Equation of Limit State under Basic Deformation of Online Elastic Range of Member Bar -- 2.1 Selection of Functional Functions, Constants and Random Variables (Taking Plastic Materials as an Example) [2] -- 2.2 Equation of Limit State -- 3 Reliability Calculation Mode in the Case of Different Distribution of Random Variables and Correlation of Failure Modes -- 3.1 JC Method's Equivalent Normal Mean and Standard Deviation and Component Failure Probability pf the Bounds Interval Estimation Method -- 3.2 Jc Method Analysis Steps and Component Failure Probability pf Bound Interval Estimation Method [5] -- 4 Conclusion -- References -- Research on Numerical Simulation Analysis and Engineering Application of Prestressed Anchor Cable Construction -- 1 Introduction -- 2 Project Profile and Key Technologies -- 2.1 Project Profile -- 2.2 Key Technology -- 3 Numerical Calculation Analysis of Prestressed Anchor Cable -- 4 Numerical Simulation of Different Slope Top Loads -- 5 Conclusion -- References -- Stress State of Asphalt Mortar Based on Meso-Scopic Finite Element Simulation and Verification -- 1 Introduction -- 2 Theoretical and Experimental Methods. , 2.1 Digital Image Processing Method.
    Weitere Ausg.: Print version: Feng, Guangliang Proceedings of the 9th International Conference on Civil Engineering Singapore : Springer,c2023 ISBN 9789819925315
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books ; Electronic books
    URL: FULL  ((OIS Credentials Required))
    URL: FULL  ((OIS Credentials Required))
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9947414268202882
    Umfang: 1 online resource (xix, 339 pages) : , digital, PDF file(s).
    ISBN: 9780511553998 (ebook)
    Serie: European studies in English literature
    Originaltitel: Drama.
    Inhalt: Manfred Pfister's book is the first to provide a coherent and comprehensive framework for the analysis of plays in all their dramatic and theatrical dimensions. The materical on which his analysis is based covers all genres and periods of drama, from Greek tragedy and comedy to the contemporary theatre, with the plays of Shakespeare providing a special focus. His approach is not historical but systematic, combining more abstract categorisations with detailed and concrete interpretations of specific sample texts. An extensive international bibliography of relevant theatre and drama studies further enhances the practical value of the book.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Drama and the dramatic: A critical summary of existing theories -- Dramatic speech situation and dialogue -- Drama as a multimedial form of presentation -- Drama in the context of of public performance activities -- Drama and the theatre: Literary text and stage-enactment -- Dramatic text and theatre design -- Drama and film: some observations -- Theatre as a social institution -- The dramatic text and the audience -- Sending and receiving information: Information in the internal and external communication systems -- Advance information and the audience's horizon of expectations -- The interrelationship of verbal and non-verbal information -- Levels of awareness in the dramatic figures and the audience -- The perspective structure of dramatic texts -- Epic communication structure in drama -- Successiveness and the transmission of information -- Verbal communication: Dramatic language and ordinary language -- The polyfunctionality of dramatic language -- Verbal communication and action -- Verbal communication and dramatic figure -- Monological speech -- Dialogical speech -- Dramatis personae and dramatic figure: The interdependence of plot and figure -- The status of dramatic figures -- Dramatis personae, configuration and figure constellation -- Figure conception and characterisation -- Story and plot: Story, plot and situation -- Presenting the story -- The combination of sequences -- Segmentation and composition -- Structures of time and space: The reality and fictionality of time and space in drama -- Open and closed structures of time and space -- The structure and presentation of space -- The structure and presentation of time.
    Weitere Ausg.: Print version: ISBN 9780521320603
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    b3kat_BV046231532
    Umfang: Illustrationen
    ISBN: 978-0-7190-9691-4
    In: pages:97-105
    In: The idea of the avant garde / ed. by Marc James Léger, Manchester [u.a.], 2014, Seite 97-105, 978-0-7190-9691-4
    Sprache: Englisch
    Fachgebiete: Germanistik
    RVK:
    Schlagwort(e): Gespräch
    Mehr zum Autor: Kluge, Alexander 1932-
    Mehr zum Autor: Negt, Oskar 1934-2024
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Chichester, West Sussex :John Wiley & Sons Inc.,
    UID:
    almafu_9959328188702883
    Umfang: 1 online resource.
    ISBN: 9780470661673 , 0470661674 , 9780470661789 , 047066178X , 9780470662496 , 0470662492 , 047074846X , 9780470748466
    Serie: [Wiley finance series]
    Inhalt: The book's content is focused on rigorous and advanced quantitative methods for the pricing and hedging of counterparty credit and funding risk. The new general theory that is required for this methodology is developed from scratch, leading to a consistent and comprehensive framework for counterparty credit and funding risk, inclusive of collateral, netting rules, possible debit valuation adjustments, re-hypothecation and closeout rules. The book however also looks at quite practical problems, linking particular models to particular 'concrete' financial situations across asset classes, incl.
    Anmerkung: Counterparty Credit Risk, Collateral and Funding; Contents; Ignition; Abbreviations and Notation; PART I COUNTERPARTY CREDIT RISK, COLLATERAL AND FUNDING; 1 Introduction; 1.1 A Dialogue on CVA; 1.2 Risk Measurement: Credit VaR; 1.3 Exposure, CE, PFE, EPE, EE, EAD; 1.4 Exposure and Credit VaR; 1.5 Interlude: P and Q; 1.6 Basel; 1.7 CVA and Model Dependence; 1.8 Input and Data Issues on CVA; 1.9 Emerging Asset Classes: Longevity Risk; 1.10 CVA and Wrong Way Risk; 1.11 Basel III: VaR of CVA and Wrong Way Risk; 1.12 Discrepancies in CVA Valuation: Model Risk and Payoff Risk. , 1.13 Bilateral Counterparty Risk: CVA and DVA1.14 First-to-Default in CVA and DVA; 1.15 DVA Mark-to-Market and DVA Hedging; 1.16 Impact of Close-Out in CVA and DVA; 1.17 Close-Out Contagion; 1.18 Collateral Modelling in CVA and DVA; 1.19 Re-Hypothecation; 1.20 Netting; 1.21 Funding; 1.22 Hedging Counterparty Risk: CCDS; 1.23 Restructuring Counterparty Risk: CVA-CDOs and Margin Lending; 2 Context; 2.1 Definition of Default: Six Basic Cases; 2.2 Definition of Exposures; 2.3 Definition of Credit Valuation Adjustment (CVA); 2.4 Counterparty Risk Mitigants: Netting. , 2.5 Counterparty Risk Mitigants: Collateral2.5.1 The Credit Support Annex (CSA); 2.5.2 The ISDA Proposal for a New Standard CSA; 2.5.3 Collateral Effectiveness as a Mitigant; 2.6 Funding; 2.6.1 A First Attack on Funding Cost Modelling; 2.6.2 The General Funding Theory and its Recursive Nature; 2.7 Value at Risk (VaR) and Expected Shortfall (ES) of CVA; 2.8 The Dilemma of Regulators and Basel III; 3 Modelling the Counterparty Default; 3.1 Firm Value (or Structural) Models; 3.1.1 The Geometric Brownian Assumption; 3.1.2 Merton's Model; 3.1.3 Black and Cox's (1976) Model. , 3.1.4 Credit Default Swaps and Default Probabilities3.1.5 Black and Cox (B & C) Model Calibration to CDS: Problems; 3.1.6 The AT1P Model; 3.1.7 A Case Study with AT1P: Lehman Brothers Default History; 3.1.8 Comments; 3.1.9 SBTV Model; 3.1.10 A Case Study with SBTV: Lehman Brothers Default History; 3.1.11 Comments; 3.2 Firm Value Models: Hints at the Multiname Picture; 3.3 Reduced Form (Intensity) Models; 3.3.1 CDS Calibration and Intensity Models; 3.3.2 A Simpler Formula for Calibrating Intensity to a Single CDS; 3.3.3 Stochastic Intensity: The CIR Family. , 3.3.4 The Cox-Ingersoll-Ross Model (CIR) Short-Rate Model for r3.3.5 Time-Inhomogeneous Case: CIR++ Model; 3.3.6 Stochastic Diffusion Intensity is Not Enough: Adding Jumps. The JCIR(++) Model; 3.3.7 The Jump-Diffusion CIR Model (JCIR); 3.3.8 Market Incompleteness and Default Unpredictability; 3.3.9 Further Models; 3.4 Intensity Models: The Multiname Picture; 3.4.1 Choice of Variables for the Dependence Structure; 3.4.2 Firm Value Models?; 3.4.3 Copula Functions; 3.4.4 Copula Calibration, CDOs and Criticism of Copula Functions; PART II PRICING COUNTERPARTY RISK: UNILATERAL CVA. , English.
    Weitere Ausg.: Print version: Brigo, Damiano, 1966- Counterparty credit risk, collateral and funding. Chichester, West Sussex : John Wiley & Sons Inc., 2013 ISBN 9780470748466
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Electronic books. ; Electronic books. ; Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Oxford :Butterworth-Heinemann,
    UID:
    edocfu_9960074176302883
    Umfang: 1 online resource (iv, 355 pages) : , illustrations
    Ausgabe: Second edition.
    ISBN: 0-12-804234-6
    Anmerkung: Cove -- Title Page -- Copyright Page -- Contents -- List of figures -- List of tables -- 1 - Site investigation and soil conditions -- 1.1 - Origin of rocks and soils -- 1.1.1 - Earth cools down -- 1.1.2 - Rock weathering -- 1.1.3 - Brief overview of rocks -- 1.1.3.1 - Igneous rocks -- 1.1.3.1.1 - Extrusive igneous rocks -- 1.1.3.1.2 - Intrusive igneous rocks -- 1.1.3.2 - Sedimentary rocks -- 1.1.3.3 - Metamorphic rocks -- 1.1.3.3.1 - Formation of metamorphic rocks -- 1.2 - Soil strata types -- 1.2.1 - Water -- 1.2.1.1 - Alluvial deposits (river beds) -- 1.2.1.2 - Marine deposits -- 1.2.1.3 - Lacustrine deposits (lake beds) -- 1.2.2 - Wind deposits (eolian deposits) -- 1.2.3 - Glacial deposits -- 1.2.4 - Colluvial deposits -- 1.2.5 - Residual soil (weathered in situ soil) -- 1.3 - Site investigation -- 1.3.1 - Cohesion -- 1.3.2 - Friction -- 1.3.3 - Measurement of friction -- 1.3.4 - Measurement of cohesion -- 1.4 - Origin of a project -- 1.4.1 - Geotechnical investigation procedures -- 1.4.2 - Literature survey -- 1.4.2.1 - Adjacent property owners -- 1.4.2.2 - Aerial surveys -- 1.4.3 - Field visit -- 1.4.3.1 - Hand augering -- 1.4.3.2 - Sloping ground -- 1.4.3.3 - Nearby structures -- 1.4.3.4 - Contaminated soils -- 1.4.3.5 - Underground utilities -- 1.4.3.6 - Overhead power lines -- 1.4.3.7 - Man-made fill areas -- 1.4.3.8 - Field visit checklist -- 1.5 - Pile foundations versus shallow foundations -- 1.5.1 - Soil modification -- 1.6 - Subsurface investigation phase -- 1.6.1 - Soil strata identification -- 1.6.2 - Augering -- 1.6.3 - Mud rotary drilling -- 1.6.4 - Boring program -- 1.6.5 - Test pits -- 1.6.6 - Hand digging prior to drilling -- 1.7 - Geotechnical field tests -- 1.7.1 - SPT (N) value -- 1.8 - SPT (N) and friction angle -- 1.9 - Field tests -- 1.9.1 - Pocket penetrometer -- 1.9.2 - Vane shear test. , 1.9.3 - Cone penetration testing -- 1.9.4 - Friction ratio -- 1.10 - Pressure meter testing -- 1.10.1 - The equal pressure increment method -- 1.10.2 - The equal volume increment method -- 1.10.3 - SPT-CPT correlations -- 1.10.4 - Standard CPT device -- 1.10.5 - Standard SPT device -- 1.10.6 - Dilatometer testing -- References -- 2 - Geophysical methods -- 2.1 - Ground-penetrating radar methods -- 2.1.1 - General methodology -- 2.1.2 - Single borehole GPR -- 2.1.3 - Procedure -- 2.1.4 - Cross-hole GPR -- 2.2 - Seismic method -- 2.2.1 - Reflected seismic waves versus refracted seismic waves -- 2.2.2 - Seismic P- and S-waves -- 2.2.2.1 - S-Waves -- 2.2.2.2 - Surface waves -- 2.2.3 - Down-hole seismic testing -- 2.2.4 - Cross-hole seismic testing -- 3 - Groundwater -- 3.1 - Introduction -- 3.1.1 - Magmatic water -- 3.1.2 - Connate water -- 3.1.3 - Metamorphic water -- 3.1.4 - Juvenile water -- 3.2 - Vertical distribution of groundwater -- 3.2.1 - Soil-water zone -- 3.2.2 - Intermediate vadose zone -- 3.2.3 - Capillary zone -- 3.3 - Aquifers, aquicludes, aquifuges, and aquitards -- 3.3.1 - Aquifer -- 3.3.2 - Aquiclude -- 3.3.3 - Aquitard -- 3.3.4 - Aquifuges -- 3.3.5 - Piezometric surface versus groundwater level -- 3.3.6 - Aquitard under pressure -- 3.3.7 - Vertical upward groundwater flow -- 3.3.8 - Vertical groundwater flow -- 3.3.9 - Monitoring wells -- 3.3.10 - Aquifers with artesian pressure -- Reference -- 4 - Foundation types -- 4.1 - Shallow foundations -- 4.2 - Mat foundations -- 4.3 - Pile foundations -- 4.4 - Caissons -- 4.5 - Foundation selection criteria -- 5 - Pile types -- 5.1 - Displacement Piles -- 5.2 - Nondisplacement piles -- 5.3 - Timber piles -- 5.3.1 - Timber pile decay: biological agents -- 5.3.1.1 - Fungi -- 5.3.1.1.1 - Identification of fungi attack -- 5.3.1.2 - Marine borers -- 5.3.1.3 - Preservation of timber piles. , 5.3.2 - Shotcrete encasement of timber piles -- 5.3.3 - Timber pile installation -- 5.3.3.1 - Splicing of timber piles -- 5.4 - Steel 'H' piles -- 5.4.1 - Splicing of H-piles -- 5.4.2 - Guidelines for splicing (international building code) -- 5.5 - Pipe piles -- 5.5.1 - Closed-end pipe piles -- 5.5.2 - Open-end pipe piles -- 5.5.2.1 - Ideal situations for open-end pipe piles -- 5.5.2.2 - Telescoping -- 5.5.2.3 - Splicing of pipe piles -- 5.6 - Precast concrete piles -- 5.6.1 - Reinforced concrete piles -- 5.6.2 - Prestressed concrete piles -- 5.6.3 - Hollow-tubular section concrete piles -- 5.6.4 - Driven cast-in-place concrete piles -- 5.6.5 - Splicing of concrete piles -- 5.7 - Augercast piles (continuous flight auger piles) -- 5.7.1 - Construction methodology -- 5.7.2 - Casing removal type -- 5.7.3 - Skin friction in cased augercast pile -- 5.7.4 - Skin friction in partially cased augercast pile -- 5.8 - Frankie piles -- 5.9 - Delta piles -- 5.10 - Vibrex piles (casing removal type) -- 5.11 - Compressed base type -- 5.12 - Precast piles with grouted base -- 5.12.1 - Capacity of grouted base piles -- 5.13 - Mandrel driven piles -- 5.14 - Composite piles -- 5.14.1 - Pipe pile/timber pile composite -- 5.14.2 - Precast concrete piles with H-section -- 5.14.3 - Uncased concrete and timber piles -- 5.15 - Fiber-reinforced plastic piles -- 5.15.1 - Materials used -- 5.15.2 - Types of FRP piles -- 5.15.2.1 - Plastic pile with a steel core -- 5.15.2.2 - Reinforced plastic piles -- 5.15.2.3 - Fiberglass pipe piles -- 5.15.2.4 - Plastic lumber -- 5.15.3 - Use of wave equation for plastic piles -- 6 - Selection of piles -- 6.1 - H-sections -- 6.2 - Concrete piles -- 6.3 - Augercast piles -- 6.4 - Open- and closed-end pipe piles -- 6.5 - Concrete piles -- 6.6 - Augercast piles -- 6.7 - H-piles -- 7 - Static and dynamic analysis. , 7.1 - Pile design in sandy soils (static analysis) -- 7.1.1 - Description of terms -- 7.1.1.1 - Effective stress (σ9) -- 7.1.1.2 - Nq (bearing capacity factor) -- 7.1.1.3 - K (lateral earth pressure coefficient) -- 7.1.1.3.1 - K0:- in situ soil condition -- 7.1.1.3.2 - Ka:- active condition -- 7.1.1.3.3 - Kp:- passive condition -- 7.1.1.3.4 - K: soil near piles -- 7.1.1.4 - tand (wall friction angle) -- 7.1.1.5 - Ap (perimeter surface area of the pile) -- 7.2 - Equations for end bearing capacity in sandy soils -- 7.2.1 - API method (American Petroleum Institute, 1984) -- 7.2.2 - Martin et al. (1987) -- 7.2.3 - NAVFAC DM 7.2 (1984) -- 7.2.4 - Bearing capacity factor (Nq) -- 7.3 - Equations for skin friction in sandy soils -- 7.3.1 - Driven piles -- 7.3.1.1 - McClelland (1974) -- 7.3.1.2 - Meyerhoff (1976) (driven piles) -- 7.3.1.3 - Meyerhoff (1976) (bored piles) -- 7.3.1.4 - Kraft and Lyons (1974) -- 7.3.1.5 - NAVFAC DM 7.2 (1984) -- 7.3.2 - Pile skin friction angle (d) -- 7.3.3 - Lateral earth pressure coefficient (K) -- 7.3.4 - Average K method -- 7.4 - Design examples -- 7.5 - Parameters that affect end bearing capacity -- 7.6 - Critical depth for end bearing capacity (sandy soils) -- 7.7 - Critical depth for skin friction (sandy soils) -- 7.7.1 - Experimental evidence for critical depth -- 7.7.2 - Reasons for limiting skin friction -- References -- 8 - Design of driven piles -- 8.1 - Pile design in sandy soils (dynamic analysis) -- 8.1.1 - Engineering news formula -- 8.1.2 - Design example -- 8.1.3 - Danish formula -- 8.2 - Water jetting -- 8.3 - Driving stresses -- 8.3.1 - Example -- 8.3.2 - Maximum allowable driving stresses -- 8.4 - Pile design in clayey soils -- 8.4.1 - Skin friction and end-bearing resistance -- 8.4.2 - End bearing versus skin friction (typical example) -- 8.4.3 - Case study: foundation design options. , 8.4.3.1 - General soil conditions -- 8.4.3.2 - Foundation option 1 -- 8.4.3.3 - Foundation option 2 -- 8.4.3.4 - Foundation option 3 -- 8.4.3.5 - Foundation option 4 -- 8.4.3.6 - Foundation option 5 -- 8.4.3.7 - Foundation option 6 -- 8.5 - Structural design of piles -- 8.5.1 - Timber pile design -- 8.5.1.1 - Quality of timber piles -- 8.5.1.2 - Knots -- 8.5.1.3 - Holes -- 8.5.1.4 - Preservatives -- 8.5.2 - Piles in marine environments -- 8.5.3 - Allowable stresses in timber -- 8.5.4 - Straightness criteria -- 8.5.5 - Allowable working stress for round timber piles -- 8.5.6 - Timber pile case study: Parakkum building, Colombo, Sri Lanka -- 8.5.6.1 - Static analysis -- 8.5.7 - Case study: bridge pile design (timber piles) -- 8.5.8 - Bridge pile design -- 8.5.8.1 - Soil parameters -- 8.5.8.2 - Earthquake -- 8.6 - Recommended guidelines for pile design -- 8.6.1 - Steel piles -- 8.6.2 - Minimum dimensions for steel pipe piles -- 8.6.3 - Concrete piles -- 8.6.3.1 - Reinforced precast concrete piles -- 8.6.3.2 - Prestressed concrete piles -- 8.6.3.3 - Concrete filled shell piles -- 8.6.3.4 - Augered pressure-grouted concrete piles -- 8.6.3.5 - Maximum driving stress -- 8.7 - Uplift forces -- 8.7.1 - Uplift due to high groundwater -- 8.7.2 - Uplift forces due to wind -- 8.8 - Pile design in expansive soil -- 8.8.1 - Identification of expansive soils -- 8.8.2 - Pile design options -- 8.8.3 - Pile caps -- 8.9 - Open-ended pipe pile design: semiempirical approach -- 8.9.1 - Plug ratio -- 8.9.2 - Incremental filling ratio -- 8.9.2.1 - Measurement of IFR -- 8.9.3 - Correlation between PLR and IFR -- 8.9.4 - End-bearing capacity of open-ended piles in sandy soils -- 8.9.5 - Skin friction of open-ended pipe piles in sandy soils -- 8.9.5.1 - Prediction of plugging -- 8.10 - Case study 1: friction piles -- 8.10.1 - Project description. , 8.10.2 - Soil condition at the site.
    Weitere Ausg.: ISBN 0-12-804202-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Oxford :Butterworth-Heinemann,
    UID:
    edoccha_9960074176302883
    Umfang: 1 online resource (iv, 355 pages) : , illustrations
    Ausgabe: Second edition.
    ISBN: 0-12-804234-6
    Anmerkung: Cove -- Title Page -- Copyright Page -- Contents -- List of figures -- List of tables -- 1 - Site investigation and soil conditions -- 1.1 - Origin of rocks and soils -- 1.1.1 - Earth cools down -- 1.1.2 - Rock weathering -- 1.1.3 - Brief overview of rocks -- 1.1.3.1 - Igneous rocks -- 1.1.3.1.1 - Extrusive igneous rocks -- 1.1.3.1.2 - Intrusive igneous rocks -- 1.1.3.2 - Sedimentary rocks -- 1.1.3.3 - Metamorphic rocks -- 1.1.3.3.1 - Formation of metamorphic rocks -- 1.2 - Soil strata types -- 1.2.1 - Water -- 1.2.1.1 - Alluvial deposits (river beds) -- 1.2.1.2 - Marine deposits -- 1.2.1.3 - Lacustrine deposits (lake beds) -- 1.2.2 - Wind deposits (eolian deposits) -- 1.2.3 - Glacial deposits -- 1.2.4 - Colluvial deposits -- 1.2.5 - Residual soil (weathered in situ soil) -- 1.3 - Site investigation -- 1.3.1 - Cohesion -- 1.3.2 - Friction -- 1.3.3 - Measurement of friction -- 1.3.4 - Measurement of cohesion -- 1.4 - Origin of a project -- 1.4.1 - Geotechnical investigation procedures -- 1.4.2 - Literature survey -- 1.4.2.1 - Adjacent property owners -- 1.4.2.2 - Aerial surveys -- 1.4.3 - Field visit -- 1.4.3.1 - Hand augering -- 1.4.3.2 - Sloping ground -- 1.4.3.3 - Nearby structures -- 1.4.3.4 - Contaminated soils -- 1.4.3.5 - Underground utilities -- 1.4.3.6 - Overhead power lines -- 1.4.3.7 - Man-made fill areas -- 1.4.3.8 - Field visit checklist -- 1.5 - Pile foundations versus shallow foundations -- 1.5.1 - Soil modification -- 1.6 - Subsurface investigation phase -- 1.6.1 - Soil strata identification -- 1.6.2 - Augering -- 1.6.3 - Mud rotary drilling -- 1.6.4 - Boring program -- 1.6.5 - Test pits -- 1.6.6 - Hand digging prior to drilling -- 1.7 - Geotechnical field tests -- 1.7.1 - SPT (N) value -- 1.8 - SPT (N) and friction angle -- 1.9 - Field tests -- 1.9.1 - Pocket penetrometer -- 1.9.2 - Vane shear test. , 1.9.3 - Cone penetration testing -- 1.9.4 - Friction ratio -- 1.10 - Pressure meter testing -- 1.10.1 - The equal pressure increment method -- 1.10.2 - The equal volume increment method -- 1.10.3 - SPT-CPT correlations -- 1.10.4 - Standard CPT device -- 1.10.5 - Standard SPT device -- 1.10.6 - Dilatometer testing -- References -- 2 - Geophysical methods -- 2.1 - Ground-penetrating radar methods -- 2.1.1 - General methodology -- 2.1.2 - Single borehole GPR -- 2.1.3 - Procedure -- 2.1.4 - Cross-hole GPR -- 2.2 - Seismic method -- 2.2.1 - Reflected seismic waves versus refracted seismic waves -- 2.2.2 - Seismic P- and S-waves -- 2.2.2.1 - S-Waves -- 2.2.2.2 - Surface waves -- 2.2.3 - Down-hole seismic testing -- 2.2.4 - Cross-hole seismic testing -- 3 - Groundwater -- 3.1 - Introduction -- 3.1.1 - Magmatic water -- 3.1.2 - Connate water -- 3.1.3 - Metamorphic water -- 3.1.4 - Juvenile water -- 3.2 - Vertical distribution of groundwater -- 3.2.1 - Soil-water zone -- 3.2.2 - Intermediate vadose zone -- 3.2.3 - Capillary zone -- 3.3 - Aquifers, aquicludes, aquifuges, and aquitards -- 3.3.1 - Aquifer -- 3.3.2 - Aquiclude -- 3.3.3 - Aquitard -- 3.3.4 - Aquifuges -- 3.3.5 - Piezometric surface versus groundwater level -- 3.3.6 - Aquitard under pressure -- 3.3.7 - Vertical upward groundwater flow -- 3.3.8 - Vertical groundwater flow -- 3.3.9 - Monitoring wells -- 3.3.10 - Aquifers with artesian pressure -- Reference -- 4 - Foundation types -- 4.1 - Shallow foundations -- 4.2 - Mat foundations -- 4.3 - Pile foundations -- 4.4 - Caissons -- 4.5 - Foundation selection criteria -- 5 - Pile types -- 5.1 - Displacement Piles -- 5.2 - Nondisplacement piles -- 5.3 - Timber piles -- 5.3.1 - Timber pile decay: biological agents -- 5.3.1.1 - Fungi -- 5.3.1.1.1 - Identification of fungi attack -- 5.3.1.2 - Marine borers -- 5.3.1.3 - Preservation of timber piles. , 5.3.2 - Shotcrete encasement of timber piles -- 5.3.3 - Timber pile installation -- 5.3.3.1 - Splicing of timber piles -- 5.4 - Steel 'H' piles -- 5.4.1 - Splicing of H-piles -- 5.4.2 - Guidelines for splicing (international building code) -- 5.5 - Pipe piles -- 5.5.1 - Closed-end pipe piles -- 5.5.2 - Open-end pipe piles -- 5.5.2.1 - Ideal situations for open-end pipe piles -- 5.5.2.2 - Telescoping -- 5.5.2.3 - Splicing of pipe piles -- 5.6 - Precast concrete piles -- 5.6.1 - Reinforced concrete piles -- 5.6.2 - Prestressed concrete piles -- 5.6.3 - Hollow-tubular section concrete piles -- 5.6.4 - Driven cast-in-place concrete piles -- 5.6.5 - Splicing of concrete piles -- 5.7 - Augercast piles (continuous flight auger piles) -- 5.7.1 - Construction methodology -- 5.7.2 - Casing removal type -- 5.7.3 - Skin friction in cased augercast pile -- 5.7.4 - Skin friction in partially cased augercast pile -- 5.8 - Frankie piles -- 5.9 - Delta piles -- 5.10 - Vibrex piles (casing removal type) -- 5.11 - Compressed base type -- 5.12 - Precast piles with grouted base -- 5.12.1 - Capacity of grouted base piles -- 5.13 - Mandrel driven piles -- 5.14 - Composite piles -- 5.14.1 - Pipe pile/timber pile composite -- 5.14.2 - Precast concrete piles with H-section -- 5.14.3 - Uncased concrete and timber piles -- 5.15 - Fiber-reinforced plastic piles -- 5.15.1 - Materials used -- 5.15.2 - Types of FRP piles -- 5.15.2.1 - Plastic pile with a steel core -- 5.15.2.2 - Reinforced plastic piles -- 5.15.2.3 - Fiberglass pipe piles -- 5.15.2.4 - Plastic lumber -- 5.15.3 - Use of wave equation for plastic piles -- 6 - Selection of piles -- 6.1 - H-sections -- 6.2 - Concrete piles -- 6.3 - Augercast piles -- 6.4 - Open- and closed-end pipe piles -- 6.5 - Concrete piles -- 6.6 - Augercast piles -- 6.7 - H-piles -- 7 - Static and dynamic analysis. , 7.1 - Pile design in sandy soils (static analysis) -- 7.1.1 - Description of terms -- 7.1.1.1 - Effective stress (σ9) -- 7.1.1.2 - Nq (bearing capacity factor) -- 7.1.1.3 - K (lateral earth pressure coefficient) -- 7.1.1.3.1 - K0:- in situ soil condition -- 7.1.1.3.2 - Ka:- active condition -- 7.1.1.3.3 - Kp:- passive condition -- 7.1.1.3.4 - K: soil near piles -- 7.1.1.4 - tand (wall friction angle) -- 7.1.1.5 - Ap (perimeter surface area of the pile) -- 7.2 - Equations for end bearing capacity in sandy soils -- 7.2.1 - API method (American Petroleum Institute, 1984) -- 7.2.2 - Martin et al. (1987) -- 7.2.3 - NAVFAC DM 7.2 (1984) -- 7.2.4 - Bearing capacity factor (Nq) -- 7.3 - Equations for skin friction in sandy soils -- 7.3.1 - Driven piles -- 7.3.1.1 - McClelland (1974) -- 7.3.1.2 - Meyerhoff (1976) (driven piles) -- 7.3.1.3 - Meyerhoff (1976) (bored piles) -- 7.3.1.4 - Kraft and Lyons (1974) -- 7.3.1.5 - NAVFAC DM 7.2 (1984) -- 7.3.2 - Pile skin friction angle (d) -- 7.3.3 - Lateral earth pressure coefficient (K) -- 7.3.4 - Average K method -- 7.4 - Design examples -- 7.5 - Parameters that affect end bearing capacity -- 7.6 - Critical depth for end bearing capacity (sandy soils) -- 7.7 - Critical depth for skin friction (sandy soils) -- 7.7.1 - Experimental evidence for critical depth -- 7.7.2 - Reasons for limiting skin friction -- References -- 8 - Design of driven piles -- 8.1 - Pile design in sandy soils (dynamic analysis) -- 8.1.1 - Engineering news formula -- 8.1.2 - Design example -- 8.1.3 - Danish formula -- 8.2 - Water jetting -- 8.3 - Driving stresses -- 8.3.1 - Example -- 8.3.2 - Maximum allowable driving stresses -- 8.4 - Pile design in clayey soils -- 8.4.1 - Skin friction and end-bearing resistance -- 8.4.2 - End bearing versus skin friction (typical example) -- 8.4.3 - Case study: foundation design options. , 8.4.3.1 - General soil conditions -- 8.4.3.2 - Foundation option 1 -- 8.4.3.3 - Foundation option 2 -- 8.4.3.4 - Foundation option 3 -- 8.4.3.5 - Foundation option 4 -- 8.4.3.6 - Foundation option 5 -- 8.4.3.7 - Foundation option 6 -- 8.5 - Structural design of piles -- 8.5.1 - Timber pile design -- 8.5.1.1 - Quality of timber piles -- 8.5.1.2 - Knots -- 8.5.1.3 - Holes -- 8.5.1.4 - Preservatives -- 8.5.2 - Piles in marine environments -- 8.5.3 - Allowable stresses in timber -- 8.5.4 - Straightness criteria -- 8.5.5 - Allowable working stress for round timber piles -- 8.5.6 - Timber pile case study: Parakkum building, Colombo, Sri Lanka -- 8.5.6.1 - Static analysis -- 8.5.7 - Case study: bridge pile design (timber piles) -- 8.5.8 - Bridge pile design -- 8.5.8.1 - Soil parameters -- 8.5.8.2 - Earthquake -- 8.6 - Recommended guidelines for pile design -- 8.6.1 - Steel piles -- 8.6.2 - Minimum dimensions for steel pipe piles -- 8.6.3 - Concrete piles -- 8.6.3.1 - Reinforced precast concrete piles -- 8.6.3.2 - Prestressed concrete piles -- 8.6.3.3 - Concrete filled shell piles -- 8.6.3.4 - Augered pressure-grouted concrete piles -- 8.6.3.5 - Maximum driving stress -- 8.7 - Uplift forces -- 8.7.1 - Uplift due to high groundwater -- 8.7.2 - Uplift forces due to wind -- 8.8 - Pile design in expansive soil -- 8.8.1 - Identification of expansive soils -- 8.8.2 - Pile design options -- 8.8.3 - Pile caps -- 8.9 - Open-ended pipe pile design: semiempirical approach -- 8.9.1 - Plug ratio -- 8.9.2 - Incremental filling ratio -- 8.9.2.1 - Measurement of IFR -- 8.9.3 - Correlation between PLR and IFR -- 8.9.4 - End-bearing capacity of open-ended piles in sandy soils -- 8.9.5 - Skin friction of open-ended pipe piles in sandy soils -- 8.9.5.1 - Prediction of plugging -- 8.10 - Case study 1: friction piles -- 8.10.1 - Project description. , 8.10.2 - Soil condition at the site.
    Weitere Ausg.: ISBN 0-12-804202-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Oxford :Butterworth-Heinemann,
    UID:
    almahu_9949697952802882
    Umfang: 1 online resource (iv, 355 pages) : , illustrations
    Ausgabe: Second edition.
    ISBN: 0-12-804234-6
    Anmerkung: Cove -- Title Page -- Copyright Page -- Contents -- List of figures -- List of tables -- 1 - Site investigation and soil conditions -- 1.1 - Origin of rocks and soils -- 1.1.1 - Earth cools down -- 1.1.2 - Rock weathering -- 1.1.3 - Brief overview of rocks -- 1.1.3.1 - Igneous rocks -- 1.1.3.1.1 - Extrusive igneous rocks -- 1.1.3.1.2 - Intrusive igneous rocks -- 1.1.3.2 - Sedimentary rocks -- 1.1.3.3 - Metamorphic rocks -- 1.1.3.3.1 - Formation of metamorphic rocks -- 1.2 - Soil strata types -- 1.2.1 - Water -- 1.2.1.1 - Alluvial deposits (river beds) -- 1.2.1.2 - Marine deposits -- 1.2.1.3 - Lacustrine deposits (lake beds) -- 1.2.2 - Wind deposits (eolian deposits) -- 1.2.3 - Glacial deposits -- 1.2.4 - Colluvial deposits -- 1.2.5 - Residual soil (weathered in situ soil) -- 1.3 - Site investigation -- 1.3.1 - Cohesion -- 1.3.2 - Friction -- 1.3.3 - Measurement of friction -- 1.3.4 - Measurement of cohesion -- 1.4 - Origin of a project -- 1.4.1 - Geotechnical investigation procedures -- 1.4.2 - Literature survey -- 1.4.2.1 - Adjacent property owners -- 1.4.2.2 - Aerial surveys -- 1.4.3 - Field visit -- 1.4.3.1 - Hand augering -- 1.4.3.2 - Sloping ground -- 1.4.3.3 - Nearby structures -- 1.4.3.4 - Contaminated soils -- 1.4.3.5 - Underground utilities -- 1.4.3.6 - Overhead power lines -- 1.4.3.7 - Man-made fill areas -- 1.4.3.8 - Field visit checklist -- 1.5 - Pile foundations versus shallow foundations -- 1.5.1 - Soil modification -- 1.6 - Subsurface investigation phase -- 1.6.1 - Soil strata identification -- 1.6.2 - Augering -- 1.6.3 - Mud rotary drilling -- 1.6.4 - Boring program -- 1.6.5 - Test pits -- 1.6.6 - Hand digging prior to drilling -- 1.7 - Geotechnical field tests -- 1.7.1 - SPT (N) value -- 1.8 - SPT (N) and friction angle -- 1.9 - Field tests -- 1.9.1 - Pocket penetrometer -- 1.9.2 - Vane shear test. , 1.9.3 - Cone penetration testing -- 1.9.4 - Friction ratio -- 1.10 - Pressure meter testing -- 1.10.1 - The equal pressure increment method -- 1.10.2 - The equal volume increment method -- 1.10.3 - SPT-CPT correlations -- 1.10.4 - Standard CPT device -- 1.10.5 - Standard SPT device -- 1.10.6 - Dilatometer testing -- References -- 2 - Geophysical methods -- 2.1 - Ground-penetrating radar methods -- 2.1.1 - General methodology -- 2.1.2 - Single borehole GPR -- 2.1.3 - Procedure -- 2.1.4 - Cross-hole GPR -- 2.2 - Seismic method -- 2.2.1 - Reflected seismic waves versus refracted seismic waves -- 2.2.2 - Seismic P- and S-waves -- 2.2.2.1 - S-Waves -- 2.2.2.2 - Surface waves -- 2.2.3 - Down-hole seismic testing -- 2.2.4 - Cross-hole seismic testing -- 3 - Groundwater -- 3.1 - Introduction -- 3.1.1 - Magmatic water -- 3.1.2 - Connate water -- 3.1.3 - Metamorphic water -- 3.1.4 - Juvenile water -- 3.2 - Vertical distribution of groundwater -- 3.2.1 - Soil-water zone -- 3.2.2 - Intermediate vadose zone -- 3.2.3 - Capillary zone -- 3.3 - Aquifers, aquicludes, aquifuges, and aquitards -- 3.3.1 - Aquifer -- 3.3.2 - Aquiclude -- 3.3.3 - Aquitard -- 3.3.4 - Aquifuges -- 3.3.5 - Piezometric surface versus groundwater level -- 3.3.6 - Aquitard under pressure -- 3.3.7 - Vertical upward groundwater flow -- 3.3.8 - Vertical groundwater flow -- 3.3.9 - Monitoring wells -- 3.3.10 - Aquifers with artesian pressure -- Reference -- 4 - Foundation types -- 4.1 - Shallow foundations -- 4.2 - Mat foundations -- 4.3 - Pile foundations -- 4.4 - Caissons -- 4.5 - Foundation selection criteria -- 5 - Pile types -- 5.1 - Displacement Piles -- 5.2 - Nondisplacement piles -- 5.3 - Timber piles -- 5.3.1 - Timber pile decay: biological agents -- 5.3.1.1 - Fungi -- 5.3.1.1.1 - Identification of fungi attack -- 5.3.1.2 - Marine borers -- 5.3.1.3 - Preservation of timber piles. , 5.3.2 - Shotcrete encasement of timber piles -- 5.3.3 - Timber pile installation -- 5.3.3.1 - Splicing of timber piles -- 5.4 - Steel 'H' piles -- 5.4.1 - Splicing of H-piles -- 5.4.2 - Guidelines for splicing (international building code) -- 5.5 - Pipe piles -- 5.5.1 - Closed-end pipe piles -- 5.5.2 - Open-end pipe piles -- 5.5.2.1 - Ideal situations for open-end pipe piles -- 5.5.2.2 - Telescoping -- 5.5.2.3 - Splicing of pipe piles -- 5.6 - Precast concrete piles -- 5.6.1 - Reinforced concrete piles -- 5.6.2 - Prestressed concrete piles -- 5.6.3 - Hollow-tubular section concrete piles -- 5.6.4 - Driven cast-in-place concrete piles -- 5.6.5 - Splicing of concrete piles -- 5.7 - Augercast piles (continuous flight auger piles) -- 5.7.1 - Construction methodology -- 5.7.2 - Casing removal type -- 5.7.3 - Skin friction in cased augercast pile -- 5.7.4 - Skin friction in partially cased augercast pile -- 5.8 - Frankie piles -- 5.9 - Delta piles -- 5.10 - Vibrex piles (casing removal type) -- 5.11 - Compressed base type -- 5.12 - Precast piles with grouted base -- 5.12.1 - Capacity of grouted base piles -- 5.13 - Mandrel driven piles -- 5.14 - Composite piles -- 5.14.1 - Pipe pile/timber pile composite -- 5.14.2 - Precast concrete piles with H-section -- 5.14.3 - Uncased concrete and timber piles -- 5.15 - Fiber-reinforced plastic piles -- 5.15.1 - Materials used -- 5.15.2 - Types of FRP piles -- 5.15.2.1 - Plastic pile with a steel core -- 5.15.2.2 - Reinforced plastic piles -- 5.15.2.3 - Fiberglass pipe piles -- 5.15.2.4 - Plastic lumber -- 5.15.3 - Use of wave equation for plastic piles -- 6 - Selection of piles -- 6.1 - H-sections -- 6.2 - Concrete piles -- 6.3 - Augercast piles -- 6.4 - Open- and closed-end pipe piles -- 6.5 - Concrete piles -- 6.6 - Augercast piles -- 6.7 - H-piles -- 7 - Static and dynamic analysis. , 7.1 - Pile design in sandy soils (static analysis) -- 7.1.1 - Description of terms -- 7.1.1.1 - Effective stress (σ9) -- 7.1.1.2 - Nq (bearing capacity factor) -- 7.1.1.3 - K (lateral earth pressure coefficient) -- 7.1.1.3.1 - K0:- in situ soil condition -- 7.1.1.3.2 - Ka:- active condition -- 7.1.1.3.3 - Kp:- passive condition -- 7.1.1.3.4 - K: soil near piles -- 7.1.1.4 - tand (wall friction angle) -- 7.1.1.5 - Ap (perimeter surface area of the pile) -- 7.2 - Equations for end bearing capacity in sandy soils -- 7.2.1 - API method (American Petroleum Institute, 1984) -- 7.2.2 - Martin et al. (1987) -- 7.2.3 - NAVFAC DM 7.2 (1984) -- 7.2.4 - Bearing capacity factor (Nq) -- 7.3 - Equations for skin friction in sandy soils -- 7.3.1 - Driven piles -- 7.3.1.1 - McClelland (1974) -- 7.3.1.2 - Meyerhoff (1976) (driven piles) -- 7.3.1.3 - Meyerhoff (1976) (bored piles) -- 7.3.1.4 - Kraft and Lyons (1974) -- 7.3.1.5 - NAVFAC DM 7.2 (1984) -- 7.3.2 - Pile skin friction angle (d) -- 7.3.3 - Lateral earth pressure coefficient (K) -- 7.3.4 - Average K method -- 7.4 - Design examples -- 7.5 - Parameters that affect end bearing capacity -- 7.6 - Critical depth for end bearing capacity (sandy soils) -- 7.7 - Critical depth for skin friction (sandy soils) -- 7.7.1 - Experimental evidence for critical depth -- 7.7.2 - Reasons for limiting skin friction -- References -- 8 - Design of driven piles -- 8.1 - Pile design in sandy soils (dynamic analysis) -- 8.1.1 - Engineering news formula -- 8.1.2 - Design example -- 8.1.3 - Danish formula -- 8.2 - Water jetting -- 8.3 - Driving stresses -- 8.3.1 - Example -- 8.3.2 - Maximum allowable driving stresses -- 8.4 - Pile design in clayey soils -- 8.4.1 - Skin friction and end-bearing resistance -- 8.4.2 - End bearing versus skin friction (typical example) -- 8.4.3 - Case study: foundation design options. , 8.4.3.1 - General soil conditions -- 8.4.3.2 - Foundation option 1 -- 8.4.3.3 - Foundation option 2 -- 8.4.3.4 - Foundation option 3 -- 8.4.3.5 - Foundation option 4 -- 8.4.3.6 - Foundation option 5 -- 8.4.3.7 - Foundation option 6 -- 8.5 - Structural design of piles -- 8.5.1 - Timber pile design -- 8.5.1.1 - Quality of timber piles -- 8.5.1.2 - Knots -- 8.5.1.3 - Holes -- 8.5.1.4 - Preservatives -- 8.5.2 - Piles in marine environments -- 8.5.3 - Allowable stresses in timber -- 8.5.4 - Straightness criteria -- 8.5.5 - Allowable working stress for round timber piles -- 8.5.6 - Timber pile case study: Parakkum building, Colombo, Sri Lanka -- 8.5.6.1 - Static analysis -- 8.5.7 - Case study: bridge pile design (timber piles) -- 8.5.8 - Bridge pile design -- 8.5.8.1 - Soil parameters -- 8.5.8.2 - Earthquake -- 8.6 - Recommended guidelines for pile design -- 8.6.1 - Steel piles -- 8.6.2 - Minimum dimensions for steel pipe piles -- 8.6.3 - Concrete piles -- 8.6.3.1 - Reinforced precast concrete piles -- 8.6.3.2 - Prestressed concrete piles -- 8.6.3.3 - Concrete filled shell piles -- 8.6.3.4 - Augered pressure-grouted concrete piles -- 8.6.3.5 - Maximum driving stress -- 8.7 - Uplift forces -- 8.7.1 - Uplift due to high groundwater -- 8.7.2 - Uplift forces due to wind -- 8.8 - Pile design in expansive soil -- 8.8.1 - Identification of expansive soils -- 8.8.2 - Pile design options -- 8.8.3 - Pile caps -- 8.9 - Open-ended pipe pile design: semiempirical approach -- 8.9.1 - Plug ratio -- 8.9.2 - Incremental filling ratio -- 8.9.2.1 - Measurement of IFR -- 8.9.3 - Correlation between PLR and IFR -- 8.9.4 - End-bearing capacity of open-ended piles in sandy soils -- 8.9.5 - Skin friction of open-ended pipe piles in sandy soils -- 8.9.5.1 - Prediction of plugging -- 8.10 - Case study 1: friction piles -- 8.10.1 - Project description. , 8.10.2 - Soil condition at the site.
    Weitere Ausg.: ISBN 0-12-804202-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    UID:
    edoccha_9961574144302883
    Umfang: 1 online resource (195 pages)
    Ausgabe: 1st ed.
    ISBN: 9783031530784
    Anmerkung: Intro -- Preface -- Acknowledgments -- Contents -- List of Figures -- List of Tables -- 1 General Overview and Structural Organization -- 1.1 Introduction -- References -- 2 The Nature of Randomness and the Element of Chance -- 2.1 Introduction -- 2.2 Definitions of Randomness in Relation to the Element of Chance -- 2.3 From Personal Beliefs to Chance Situations: Facts and Artifacts of Scientific Reality -- 2.3.1 The Principal Principle and Chance Situations -- 2.3.2 The Basic Chance Principle and Humean Supervenience -- 2.4 Conclusion -- References -- 3 Rethinking the Concept of (In)Opportunity Cost and Parable of Broken Window: A Reflection on the Ideas of Frédéric Bastiat -- 3.1 Introduction -- 3.2 Parable of Broken Window as Random Economic Event -- 3.2.1 The Difference Between Random Event and Random 'Economic' Event -- 3.2.2 Broken Window Incident (De Re) as Opposed to Incidence (De Dicto): Ex-Ante and Ex-Post Analysis -- 3.2.3 The Concept of (In)Opportunity Cost and the Element of Time -- 3.3 Lessons of Destruction: Learned and Unlearned -- 3.3.1 The Three-Partite Structural Function of Chance Situations in Alternative Life-Worlds with Different Technological Endowments -- 3.3.2 The Adaptation of Learning Curve to the Theory of Creative Destruction -- 3.4 The Process of Creative Destruction and Cycles of Innovation -- 3.5 Closing Remarks -- References -- 4 The Effect of Human Action on Random Economic Events: Praxeological Learning and Its Relation to Artificial Intelligence -- 4.1 Introduction -- 4.2 The Categorical Distinctions in Probability Theory: A Comparison of Random (Economic) Events in Collective Classes and Individual Cases -- 4.3 Learning and Praxeology: Praxeological Action Learning -- 4.4 From Action Learning by Humans to Active Learning by Machines: The Relation of Praxeology to Artificial Intelligence. , 4.5 A Brief Overlook of the History of ChatGPT and Principles of Artificial General Intelligence (AGI) in Conclusion -- References -- 5 The Question of Conjecture in Economics and Probability: On the Applicability of Probability Theory to the Randomness of Economic Events -- 5.1 Introduction -- 5.2 The Anatomic Panorama of Probability, Statistics and Truth in Relation to the Concept of Randomness and the Question of Conjecture From Historical Perspective -- 5.3 The Question of Conjecture in Relation to the Concepts of Certainty, Probability, Possibility and Impossibility -- 5.4 Keynes' Logical Interpretation of Probability and His Intent to 'Rehabilitate' the Principle of Indifference Caused by Insufficient Reason -- 5.5 The Concept of 'Kollektive' and Limiting Value of Relative Frequencies Explained Within Carnapian Interpretation of Logical Probability -- 5.6 The Practical Application of Probability Theory to Random Economic Events Requires Construction of Local Collectives as Opposed to Unknown Statistical Populations -- 5.7 The Critique Concerning the Use of Probability in Economics and the Concept of Scientism in Relation to the Law of Frequency of Errors Together with Some Considerations for Closure -- References -- 6 The Anatomy of Accident as a Deviation from Random Walk -- 6.1 Introduction -- 6.2 From the Classical Origins of the Problem of Random Walk Phenomenon to the Modern Model of Donsker's Invariance Principle -- 6.3 The Practical Mapping of Random Walk: Kalman Filter Approach and Randomness Versus Stochasticity -- 6.4 The Practical Mapping of Random Walk: Bortkiewicz's the So-Called 'Law of Small Numbers' and the Data of Prussian Cavaliers Died by Warhorse Kick in Between 1875 and 1894 That Follows Poisson Distribution. , 6.5 Final Remarks from the Retrospective to the Prospective Theory of Economic Thought in Relation to the Law of Small Numbers as Opposed to the Law of Large Numbers -- Appendix 6.1: A Historical Example for the Practical Mapping of Random Walk: John Venn's First Graphical Illustration -- Appendix 6.2 -- Appendix 6.3: Critical Considerations About the "Belief in the Law of Small Numbers" Versus Scaling Law-A Theoretical Note: Comment on Tversky and Kahneman (1971) -- References -- 7 Observability and Learnability as Opposed to 'Seen and Unseen' -- 7.1 Introduction -- 7.2 The Degrees of Observability in Relation to the States of Learnability -- 7.3 Two Examples for the observations of Concrete Situations as Opposed to Abstract Cases From the Science of Astronomy -- 7.4 Immutable Rules for Observability and Learnability in Conclusion -- 7.5 A Brief Comparison of How Random Events are Treated in Economics Versus Other Fields of Science: From the Historical Background of the Past to the Present Investigations -- 7.5.1 The Treatment of Randomness from the Viewpoint of Econophysics: Historical Background -- 7.5.2 The problem of 'Marginal Utility' Measurement in a Statistical Method and the Approach of "Psychophysics" by Weber-Fechner Law Redesigned for Intertemporal Utility Analysis -- 7.5.3 The Treatment of Randomness from the Viewpoint of Econophysics: Contemporary Considerations in Relation to Scaling Laws versus Newton's Laws -- References -- Name Index -- Subject Index.
    Weitere Ausg.: Print version: Hacıoğlu, Volkan The Economic Analysis of Random Events Cham : Springer International Publishing AG,c2024 ISBN 9783031530777
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    almahu_9949286198002882
    Umfang: XXXVI, 858 p. 425 illus., 378 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030939366
    Inhalt: This volume presents select proceedings of the International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD - 2021), held at the National Institute of Technical Teachers Training & Research and Chitkara University, Himachal Pradesh, India. It covers several important aspects of sustainable civil engineering practices, dealing with effective waste and material management, natural resources, industrial products, energy, food, transportation and shelter, environmental impact mitigation, waste minimization and management, sustainable infrastructure, and geospatial technology for sustainable and clean environment. Emphasis is placed on conserving and protecting the environment and the natural resource base essential for future development. The book includes case studies and ongoing research work from various fields related to civil engineering presented by academicians, scientists, and researchers. The book also discusses engineering solutions to sustainable development and green design issues. Special emphasis is given on qualitative guidelines for the generation, treatment, handling, transport, disposal, and recycling of wastes. The book is intended as a practice-oriented reference guide for researchers and practitioners. It will be useful for anyone working in sustainable civil engineering and related fields.
    Anmerkung: Chapter1. Effect of Lime And Brick Ash Inclusion on Engineering Behaviour of Expansive Soil -- Chapter2. Know your Daily Rainfall in any Location in India- A Web-based Approach Developed in Google Earth Engine -- Chapter3. IoT- Based Innovative Technological Solutions for Smart Cities and Villages -- Chapter4. A Review on Utilization of E-Waste in Construction -- Chapter5. Water Sensitive Urban Design (WSUD) for Treatment of Storm water Runoff -- Chapter6. Textile Industry Wastewater Treatment using Eco-friendly Techniques -- Chapter7. Sustainable Treatment of Metal-Contaminated Soil by Electrokinetic Remediation -- Chapter8. Eco-Restoration of lakes and water sustainability in urban areas -- Chapter9. Microplastics: Environmental Issues and their Management -- Chapter10. Elucidating the Effect of Cement Dust on Selective Soil Parameters around J&K Cements Limited, Khrew -- Chapter11. Development of Correlation between Ultrasonic Pulse Velocity and Rebound Hammer Test Results for Condition Assessment of Concrete Structures for Sustainable Infrastructure Development. Chapter12. Alternative Fine Aggregates to Produce Sustainable Self Compacting Concrete: A Review -- Chapter13. Structural Behavior of Reinforced Concrete Column Using Diamond Tie Configuration under Elevated Temperatures for Sustainable Performance: A Review -- Chapter14. Reusable and Recyclable Industrial Waste in Geopolymer Concrete -- Chapter15. Infrared Thermography Parameter Optimization for Damage Detection of Concrete Structures Using Finite Element Simulations -- Chapter16. Eco-friendly Concrete Admixture from Black Liquor Generated in Pulp and Paper Industry -- Chapter17. Behavioural study on concrete with organic materials for CO2 absorption -- Chapter18. An Efficient Design and Development of IoT based Real-Time Water Pollution Monitoring and Quality Management System -- Chapter19. Numerical Study of Composite Wrapped Reinforced Concrete Columns Subjected to Close-in Blast -- Chapter20. Evaluation of conventional red bricks with compressed stabilized earth blocks as alternate sustainable building materials in Indian context -- Chapter21. Experimental Study on Alternative Building Material using Cement and Stone Dust as Stabilizers in Stabilized Mud Block -- Chapter22. Utilizing the Potential of Textile Effluent Treatment Sludge in Construction Industry: Current Status, Opportunities, Challenges, and Solutions -- Chapter23. Identification of Suitable Solid Waste Disposal Sites for the Arba Minch Town, Ethiopia, Using Geospatial Technology and AHP Method -- Chapter24. Framing Conceptual Design of Adopting Interlocking Bricks Technology in Construction -- Chapter25. Arriving Factors in the Conceptual Design Framework of 3D Printing Techniques for Building construction -- Chapter26. Scenic Evaluation of the Hills for Tourism Development - A Study on the Hills Of Tamilnadu, India -- Chapter27. Influence of Groundnut Shell Ash and Waste Plaster of Paris on Clayey Soil for Sustainable Construction -- Chapter28. Influence of Metakaolin and Steel Fiber on Strength of Concrete - A Critical Review -- Chapter29. Decadal monitoring of Coastline shifts and recommendation of Non-structural Protection measures along the coast of Rameshwaram, Tamilnadu, India -- Chapter30. Development of sustainable concrete using slag and calcined clay -- Chapter31. Assessment of the impact of bacillus cereus bacteria on strength and water absorption capacity of sustainable concrete -- Chapter32. Design and Development of Corona-19 Pandemic Situation-based Remote Voting System -- Chapter33. Waste Pozzolanic Material as a substitute of Geopolymer Mortar -- Chapter34. Study of the carbon emissions from construction of a house in plain region using standard construction material and eco-friendly/ alternative materials -- Chapter35. Experimental investigation of the impacts of partial substitution of cement with rice husk ash (RHA) on the characteristics of cement mortar -- Chapter36. A Mini review on Current Advancement in Application of Bacterial Cellulose in Pulp and Paper Industry -- Chapter37. Effect of agro-waste as a partial replacement in cement for sustainable concrete production -- Chapter38. Analysis and Evaluation of Geopolymer Concrete from Mechanical standpoint -- Chapter39. Municipal Waste Management in India: A Critical Review of Disposal System and Model Implementation -- Chapter40. Experimental Study on Light Weight Geopolymer Concrete Using Expanded Clay Aggregate -- Chapter41. Seismic Response of Composite Bridges: A Review -- Chapter42. Assessing and Correlating the Flow Duration Curve and Drought Index for the Environmental Flow Requirements -- Chapter43. Effect on Rheological and Hardened properties of Fly ash-GGBS based High Strength Self Compacting Concrete with inclusion of Micro and Nano Silica -- Chapter44. Mechanical Property study on Glass fibre concrete with partial replacement of fine aggregate with steel slag -- Chapter45. Mechanical Properties of Geopolymer Concrete Partial Replacement of Fine Aggregate with Waste Crushed Glass -- Chapter46. A Performance Study on Lithium based admixture in the properties of concrete -- Chapter47. Self-Curing Concrete Made By Using Hemp: A Review -- Chapter48. Research Progress of India in Waste Management at Global Level: A Bibliometric Evaluation -- Chapter49. Performance Evaluation of Acrylic Based Coating on Carbonation Depth on Different Grades of Concrete -- Chapter50. Cost Benefit Analysis of Retrofitting for Existing Building as Net Zero Energy Building: A Case Study in Composite Climate Zone -- Chapter51. Advances in Building Materials Industry by Annexation of Nano Materials -- Chapter52. Experimental Investigations on Utilization of Electroplating Waste Sludge in Manufacturing of Polymer Based Checkered Tiles -- Chapter53. Alccofine as a partial substitute of cement with scrap iron slag as a coarser material in high strength non-conventional concrete as an experimentational representation. Chapter54. Water Pollution: "Dal Lake a case study" -- Chapter55. Durability Properties of Admixture of Fly ash, Bottom Ash And GBFS -- Chapter56. Comparative Studies of Compressive Strength on Different Brick Masonry Prisms -- Chapter57. Monitoring and Management of Construction Sites Using Drone -- Chapter58. Experimental Investigation on Buckling Behaviour of Transmission Tower using Cold Formed and Hot Rolled Steel -- Chapter59. Assessment of indoor air quality of buildings made of bricks developed from paper pulp waste -- Chapter60. Review on Shear Strengthened RC Rectangular beams with FRP Composites -- Chapter61. Machine Learning Based Quality Prediction of Reuse Water in Sewage Treatment Plant -- Chapter62. "Prediction, Impact and Mitigation of Ambient Air Quality Pollutant Concentrations in Chandigarh" A Review -- Chapter63. A Review of Environmental Flow Evaluation Methodologies - Limitations and Validations -- Chapter64. Sustainable development of Scheduled caste and Scheduled tribes' population in select villages of Himachal Pradesh, India: A Cross Sectional Study.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030939359
    Weitere Ausg.: Printed edition: ISBN 9783030939373
    Weitere Ausg.: Printed edition: ISBN 9783030939380
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    almahu_9949384404502882
    Umfang: 1 online resource (482 pages)
    ISBN: 9780429608223 , 0429608225 , 9780429058882 , 0429058888 , 9780429602702 , 0429602707 , 9780429597183 , 0429597185
    Serie: Proceedings in Earth and geosciences ; v. 2
    Inhalt: Geotechnical Fundamentals and Applications in Construction. New Materials, Structures, Technologies and Calculations contains the papers presented at the International Conference on Geotechnical Fundamentals and Applications in Construction. New Materials, Structures, Technologies and Calculations (GFAC 2019, Saint Petersburg, Russia, 6-8 February 2019). The contributions present the latest research findings, developments, and applications in the areas of geotechnics, soil mechanics, foundations, geological engineering and share experiences in the design of complex geotechnical objects, and are grouped in 8 sections: Analytical decisions and numerical modeling for foundations; Design and construction in geologically hazardous conditions; Methods for surveying the features of dispersed, rocky soils and structurally unstable soils; Exploration, territory improvement and reconstruction in conditions of compact urban planning and enterprises, etc.; Construction, reconstruction and exploitation of infrastructure facilities in different soil conditions; R & D support and quality control of new materials, design and technology solutions in constructing bases, foundations, underground and surface constructions; Condition survey and accident evolution analysis in construction; Up-to-date monitoring techniques in building construction and exploitation. Geotechnical Fundamentals and Applications in Construction. New Materials, Structures, Technologies and Calculations collects the state-of-the-art in geotechnology and construction, and will be of interest to academia and professionals in geotechnics, soil mechanics, foundation engineering and geological engineering.
    Anmerkung: Test simulation of controlled compensation grouting; A.V. Alexandrov, E.N. Bellendir, P.A. Vaver & A.N. Simutin Model tasks for management of process of sibsidence of earth's surface; S. Altynbekov Surcharge preloading as a method for engineering reservoir foundations in silty soils; A.A. Ananyev Correlation between wave analysis data and data of plate load tests in various soils; V.V. Antipov & V.G. Ofrikhter Reconstruction and methods to protect stone buildings of the early 19th century; T. Awwad, R. Chekaeva, M. Chekaev, A. Seisekeeva & L. Awwad Soil constitutive model effect on the distribution of pile axial load-parametric study; T. Awwad & S.A. Al Kodsi An extended model of impedance functions of monopile-supported offshore wind turbines incorporating soil-structure interaction effect; A. Barari & L.B. , Ibsen Design peculiarities of foundation structures in permafrost and seismically active areas; T.A. Belash Geotechnical aspect of load-bearing analysis of explosively driven pile foundation soil; L.M. Borozenets Experimental estimate of instantaneous adfreeze strength of glass-fibre reinforced plastic in frozen soil; A.V. Boyarintsev & S.V. Lanko Predicting air quality in underground structures; T.A. Datciuk, D.M. Denisikhina & E.A. Anshukova Setting soil strength parameters for slope stability calculations; I.K. Fomenko, K.V. Kurguzov, O.V. Zerkal & O.N. Sirotkina Development of analytical methods to determine swelling and shrinkage of clay soils; F.G. Gabibov Disadvantages of standards for construction on collapsible soils; B.F. Galay, V.V. Serbin & O.B. Galay Efficient use of sand cushions; V.S. Glukhov & M.V. , Glukhova Numerical studies on horizontally loaded bored piles; A.L. Gotman, A.Z. Gaisin & A.O. Glazachev Assessment of operation of fiber-reinforced soil located behind retaining wall; A.S. Grishina & A.B. Ponomaryov Geo-Base Isolation with geogrid reinforcement for buildings; A. Boominathan, S. Banerjee & J.S. Dhanya Stabilization of permafrost soils at base of road fill; M.E. Igoshin, M.V. Paramonov, V.V. Vorontsov & P.A. Kravchenko Authenticity of soils and foundation of Bayon temple in Angkor Thom and restoration of retaining structures in Angkor; Y. Iwasaki, M. Ishizuka, S. Soeur, R. McCarthy, T. Nakagawa & L. Vanna Characteristics of ultrafine permeation grouting for foundation soil of Northern River Terminal in Moscow; F.N. Kalach, V.I. Nozdrya, A.I. Osokin & V.B. , Ivanishchev Basic relationships between statics and dynamics in reinforced shell roofs of underground and aboveground structures and methods of their calculation; V.V. Karpov & A.A. Semenov Advanced composite-based structural design solutions; T.P. Kasharina Composite-based shell and soil reinforcement designs for bank protection structures; D.V. Kasharin Construction of foundations using chrysotile cement pipes; Yu.N. Kazakov & A.E. Alekseev Influence of concrete strength evaluation method accuracy on reliability levels of geotechnical structures; A.M. Kharitonov, Y.M. Tikhonov & Y.A. Belentsov Analytical study of effect of compensatory layer installed in contact zone of foundation slab; N.Y. Kiselev & Ya.A. Pronozin Construction embankment of automobile road on pile foundation in weak soil; S.A. Kudryavtsev, T.U. Valtseva, S.A. Bugunov, Z.I. Kotenko, N.I. , Sokolova & M.N. Erofeev Impact of artificial footing in pile-adjacent zone on operation of laterally-loaded single pile foundation; S.V. Lanko, L.N. Kondratieva, A.V. Evstratov & A.V. Derendyaev Concerning the dynamic load impact on development of landslide processes; A.I. Latypov & E.A. Korolev Hardening of clay soil under compression; P.A. Lyashenko & V.V. Denisenko Experimental studies of soil base deformations under the model of flexible bottom of steel vertical tanks; R.A. Mangushev, V.V. Konyushkov, R.A. Usmanov & V.M. Kirillov Stability of slopes under exposure to soil wetting; I.V. Manyakhin & R.A. Mangushev Antimudflow protection with rigid thorough structures; S.I. Matsiy & L.A. Sukhlyaeva Features of calculating gravity retaining wall without assumption of base soil liquefaction; O.P. , Minaev Features of calculating stability of retaining wall with significant horizontal load on base soil; O.P. Minaev Changes in physical and mechanical characteristics of soil under triaxial loading; I.T. Mirsayapov & I.V. Koroleva Influence of a deep construction pit on a technical condition of surrounding buildings; I.T. Mirsayapov & N.N. Aysin Floor construction in basements during reconstruction of buildings in peaty territories; A.V. Nikitin, A.L. Nevzorov & Yu.V. Saenko Prediction of settlement of buildings surrounding deep excavations in Viet Nam; N.S. Nikiforova & N. Van-Hoa On criterion for considering dynamic soil-structure interaction effects; L.V. Nuzhdin, V.S. Mikhailov & I.D. Yankovskaya Specifics of engineering support for installation of bored piles in cluttered urban settings; A.I. Osokin, V.A. Ermolaev & A.I. , Kuzhelev Specifics of engineering design of piled raft foundations in soft soils; A.I. Osokin, V.O. Efimov & L.N. Kondratieva Comprehensive bearing capacity analysis of permafrost railroad leading to Tank-Car filling rack; V.V. Pendin, I.K. Fomenko, D.N. Gorobtsov & M.E. Nikulina Geotechnical and geoecological fundamentals of sustainable life cycle of unique long-operated underground structures of water disposal systems in difficult soil conditions (the experience of St. Petersburg); N. Perminov & A. Perminov Soil base reinforcement with rigid elements represented by built-in-place piles in rolled-out wells (practical experience); V.P. Perov & S.V. Perov Simulation of strain-stress behavior of tunnel collectors in conditions of combined anthropogenic effects; N. Perminov & A. , Perminov Simulation of unsteady interaction of large RC shell with heterogeneous soil milieu for gradually increasing caisson structure; N. Perminov Geotechnical problems of transport construction and their solutions; T.M. Petrova & E.Yu. Chistyakov Operating peculiarities of reinforced concrete structures in intense cold and freeze-thaw temperature; M.G. Plyusnin, V.I. Morozov & V.M. Popov Analytical method for calculating the bearing capacity of injection piles in clayey soil; A.I. Polishchuk, A.A. Petukhov & R.V. Shalginov Influence of stiffness of separating wall between foundations of closely-spaced buildings on their settlements; A.I. Polishchuk & A.S. Mezhakov Parameters determining differences between geometric and mechanical properties of spiral elements in rope, affecting development of emergency situations; S.V. Polyakov & A.E. , Pushkarev Rationale for method of settlement calculation for multiple blade helical piles in clayey ground; A.I. Polishchuk, F.A. Maximov & N.S. Nikitina Use of marl as ground base for embankments; A.B. Ponomaryov, E.N. Sychkina & V.I. Kleveko Calculation and geotechnical monitoring of buildings on strip-membrane foundations; O.S. Poroshin, Ya.A. Pronozin, L.R. Epifantseva & Yu.V. Naumkina Changes in soil properties at unloading of base of deep foundation pi
    Weitere Ausg.: Print version: Mangushev, Rashid. Geotechnics Fundamentals and Applications in Construction : New Materials, Structures, Technologies and Calculations. Milton : CRC Press LLC, ©2019 ISBN 9780367179830
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books. ; Conference papers and proceedings.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz