Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9960119013302883
    Umfang: 1 online resource (ix, 206 pages) : , digital, PDF file(s).
    ISBN: 1-108-24413-0 , 1-108-24584-6 , 1-108-23362-7
    Serie: Cambridge medicine
    Inhalt: Co-authored by a leading ophthalmology researcher and a professor with fifteen years of experience teaching writing in the biomedical sciences, The Biomedical Writer addresses ways to use psychology and neuroscience to equip researchers and clinicians with an understanding of how effects like priming, primacy, recency, framing, and apparent paradoxes can make or break your articles and grant proposals. The Biomedical Writer covers everything from making sentences readable, effective, and memorable to working with collaborators under unforgiving deadlines. Going far beyond the basic structure and content of manuscripts and proposals, this guide to writing in biomedicine also focuses on topics that include handling negative results and the most important and neglected step in submitting manuscripts to journals.
    Anmerkung: Title from publisher's bibliographic system (viewed on 24 Apr 2018). , Writing : the most vital and neglected skill -- Writing for your reader's brain -- Before you begin : getting to so what? and who cares? -- Getting published : manuscripts, journals, and submissions -- Getting funded : applying for grants -- Collaborative writing : pass the baton -- Communicating with the public.
    Weitere Ausg.: ISBN 1-108-40139-2
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Waltham, MA :Academic Press,
    UID:
    almahu_9949697522302882
    Umfang: 1 online resource (xxxvii, 668 pages) : , illustrations (some color)
    Ausgabe: 2nd ed.
    ISBN: 0-12-391462-0
    Serie: Gale eBooks
    Inhalt: This second edition of a pioneering technical work in biomedical informatics provides a very readable treatment of the deep computational ideas at the foundation of the field. Principles of Biomedical Informatics, 2nd Edition is radically reorganized to make it especially useable as a textbook for courses that move beyond the standard introductory material. It includes exercises at the end of each chapter, ideas for student projects, and a number of new topics, such as: .tree structured data, interval trees, and time-oriented medical data and their use . On Line Application Processing (OLAP), an old database idea that is only recently coming of age and finding surprising importance in biomedical informatics a discussion of nursing knowledge and an example of encoding nursing advice in a rule-based system X-ray physics and algorithms for cross-sectional medical image reconstruction, recognizing that this area was one of the most central to the origin of biomedical computing .an introduction to Markov processes, and an outline of the elements of a hospital IT security program, focusing on fundamental ideas rather than specifics of system vulnerabilities or specific technologies. It is simultaneously a unified description of the core research concept areas of biomedical data and knowledge representation, biomedical information access, biomedical decision-making, and information and technology use in biomedical contexts, and a pre-eminent teaching reference for the growing number of healthcare and computing professionals embracing computation in health-related fields. As in the first edition, it includes many worked example programs in Common LISP, the most powerful and accessible modern language for advanced biomedical concept representation and manipulation. The text also includes humor, history, and anecdotal material to balance the mathematically and computationally intensive development in many of the topic areas. The emphasis, as in the first edition, is on ideas and methods that are likely to be of lasting value, not just the popular topics of the day. Ira Kalet is Professor Emeritus of Radiation Oncology, and of Biomedical Informatics and Medical Education, at the University of Washington. Until retiring in 2011 he was also an Adjunct Professor in Computer Science and Engineering, and Biological Structure. From 2005 to 2010 he served as IT Security Director for the University of Washington School of Medicine and its major teaching hospitals. He has been a member of the American Medical Informatics Association since 1990, and an elected Fellow of the American College of Medical Informatics since 2011. His research interests include simulation systems for design of radiation treatment for cancer, software development methodology, and artificial intelligence applications to medicine, particularly expert systems, ontologies and modeling.
    Anmerkung: Description based upon print version of record. , ""Half Title""; ""Title Page""; ""Copyright""; ""Dedication""; ""Contents""; ""Preface to the Second Edition ""; ""Foreword from the First Edition ""; "" Preface from the First Edition ""; ""List of Figures""; ""List of Tables""; ""1 Biomedical Data""; ""1.1 The Nature and Representation of Biomedical Data""; ""1.1.1 What Can Be Represented in a Computer?""; ""1.1.2 Cells, DNA, Proteins, and the Genetic Code""; ""1.1.2.1 The Fundamental Dogma of Molecular Biology""; ""1.1.2.2 Representing DNA in Computer Programs""; ""1.1.2.3 FASTA Files and Reading Multiple Records""; ""1.1.3 Anatomy"" , ""1.1.4 Medical Laboratory Data""""1.1.5 Medical Images""; ""1.1.6 Metadata""; ""1.1.6.1 Tags As Metadata""; ""1.1.6.2 Source Code As Metadata""; ""1.1.6.3 Data, not Variables, Have Types""; ""1.2 Objects, Metadata, and Serialization""; ""1.2.1 A Simple Solution Using Tags (Keywords)""; ""1.2.2 An Object-Oriented Design""; ""1.2.2.1 Object-oriented Programming in Lisp""; ""1.2.2.2 A Redesign Using Classes""; ""1.2.3 A Better Solution Using Metaobjects""; ""1.2.4 Medical Images: Incorporating Binary Data""; ""1.2.4.1 Representing Image Data""; ""1.2.4.2 Reading and Writing Image Data"" , ""1.2.5 Drug Interactions: Organizing Drugs into Classes""""1.2.5.1 Drug Information Catalogs""; ""1.2.5.2 Procedural Knowledge About Enzymatic Metabolism""; ""1.2.6 XML""; ""1.3 Database Concepts and Systems""; ""1.3.1 The Relational Model""; ""1.3.1.1 A Brief Introduction to SQL""; ""1.3.1.2 Normalization""; ""1.3.1.3 Constraints and Keys""; ""1.3.1.4 Relational Algebra""; ""1.3.1.5 The Catalog, Metadata, and Object-Oriented Databases""; ""1.3.2 Indexing and Tree Structures""; ""1.3.2.1 Binary Search on Arrays""; ""1.3.2.2 Binary Search Trees""; ""1.3.2.3 Hash Tables"" , ""1.3.3 Time-Oriented Data and Interval Trees""""1.3.3.1 Constructing intervals from results""; ""1.3.3.2 Constructing an interval tree from intervals""; ""1.3.3.3 Queries and searching the interval tree""; ""1.3.4 The Entity-Attribute-Value (EAV) Model""; ""1.3.5 Online Analytical Processing (OLAP)""; ""1.3.5.1 Background""; ""1.3.5.2 OLAP fundamentals and an example""; ""1.3.5.3 Dimensions""; ""1.3.5.4 Cubes""; ""1.3.5.5 Tuples and measures""; ""1.3.5.6 Queries and the Multi-dimensional Expression Language""; ""1.3.5.7 Dihedral Angles: Query Results"" , ""1.3.5.8 Clinical trial feasibility: a second example""""1.4 Data Quality""; ""1.5 Data, Information, and Knowledge""; ""1.6 Summary""; ""1.7 Exercises""; ""2 Symbolic Biomedical Knowledge""; ""2.1 Biomedical Theories and Computer Programs""; ""2.1.1 A World Class Reasoning Example""; ""2.1.2 Biological Examples""; ""2.1.3 Symbolic Theories""; ""2.2 Logic and Inference Systems""; ""2.2.1 Predicate Calculus""; ""2.2.1.1 Truth and Consequences""; ""2.2.1.2 Inference Rules""; ""2.2.1.3 Theorems and Proofs""; ""2.2.1.4 Automated Proof Methods"" , ""2.2.1.5 Example: Biochemical Reachability Logic"" , English
    Weitere Ausg.: ISBN 0-12-416019-0
    Weitere Ausg.: ISBN 1-299-95331-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Duxford, Kidlington, England ; : Woodhead Publishing,
    UID:
    almahu_9949697772302882
    Umfang: 1 online resource (428 pages) : , illustrations.
    ISBN: 0-08-101746-4 , 0-08-101745-6
    Serie: Woodhead Publishing Series in Biomaterials
    Inhalt: "The first part of this book deals with the main technological aspects of EFDTs, such as basic technologies, the role of process parameters to impart specific morphological, biochemical, or physical cues able to trigger cell biomaterial and cell-to-cell interactions, and current technological implementations used to encode new scaffold functionalities. The second part of the book addresses applications of EFDTs in biomedical fields, with chapters on their application in tissue engineering, molecular delivery, and implantable devices. This book is a valuable resource for materials scientists, biomedical engineers, and clinicians who are interested in novel technologies for tissue engineering and therapeutic applications"--
    Anmerkung: Front Cover -- Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices -- Related titles -- Electrofluidodynamic Technologies (EFDTs) for Biomaterials and Medical Devices -- Copyright -- Contents -- List of contributors -- Preface -- 1 - Introduction to electrofluidodynamic techniques. Part I: process optimization -- 1.1 Introduction -- 1.2 Basic principles -- 1.2.1 Electrospinning -- 1.2.2 Electrospraying -- 1.3 Tailoring processes for customized applications -- 1.3.1 Electrodynamic atomization for cell delivery -- 1.3.2 Melt writing for 3D ordered scaffolds -- 1.4 Additive processes for molecular release -- 1.5 Future trends -- Acknowledgments -- References -- 2 - Introduction to electrofluidodynamic techniques. Part II: cell-to-cell/material interactions -- 2.1 Introduction -- 2.2 Cell-material interactions on electrofluidodynamic spun mats -- 2.2.1 Morphological surface effects of EFDT spun membrane -- 2.2.2 Biochemical cues on cell/tissue response of EFDT spun membrane -- 2.3 Cell electrospinning -- 2.4 Animal models for evaluation of electrofluidodynamic material interactions -- 2.5 Conclusions -- Acknowledgments -- References -- 3 - Electrofluidodynamic technologies for biomaterials and medical devices: melt electrospinning -- 3.1 Introduction -- 3.2 Topic overview -- 3.3 Melt electrospinning process -- 3.4 Polymers in melt electrospinning -- 3.4.1 Polycaprolactone -- 3.4.2 Polylactic acid -- 3.4.3 Poly(lactic-co-glycolic acid) -- 3.4.4 Polyethylene terephthalate -- 3.4.5 Polyurethane -- 3.4.6 Polyethylene -- 3.4.7 Polypropylene -- 3.4.8 Nylon -- 3.5 System design -- 3.5.1 Syringe-based polymer delivery -- 3.5.1.1 Heating -- 3.5.1.2 Extrusion -- 3.5.2 Other polymer delivery techniques -- 3.5.2.1 Screw extrusion melt electrospinning -- 3.5.2.2 Laser-heated melt electrospinning. , 3.5.2.3 Gas-assisted melt electrospinning -- Coaxial melt electrospinning -- Multiple Taylor cone melt electrospinning -- 3.5.3 Chamber and electric field -- 3.6 Ordered melt electrospinning -- 3.7 Process parameters -- 3.8 Melt electrospinning in biomaterials and medical devices -- 3.8.1 In vivo models -- 3.8.2 Mesh scaffolds -- 3.8.3 Patterned scaffolds -- 3.8.4 Vascular scaffolds -- 3.8.5 Wound healing -- 3.8.6 Melt electrospinning and hydrogels -- 3.8.7 Melt electrospinning and electrospraying -- 3.8.8 Drug loading -- 3.9 Melt electrospinning for industrial applications -- 3.9.1 Filters -- 3.9.2 Phase change materials -- 3.9.3 Textiles -- 3.10 Future trends -- References -- 4 - Biofabrication via integrated additive manufacturing and electrofluidodynamics -- 4.1 Introduction -- 4.2 Additive manufacturing in biomedical sciences -- 4.3 Biofabrication -- 4.4 Integrated additive manufacturing and electrofluidodynamics -- 4.4.1 Multiscale structures -- 4.4.2 Patterned nanostructures -- 4.5 Conclusions and future perspectives -- References -- 5 - Pyroelectrohydrodynamic spinning for micro- and nanopatterning -- 5.1 Introduction -- 5.2 Principles of pyroelectrohydrodynamics -- 5.2.1 Activation of pyroelectric effect and liquid instability -- 5.2.2 Processing parameters and functionalities -- 5.2.3 Pyroprinting modalities -- 5.3 Printing of micro nanodroplets -- 5.3.1 Accumulation of biomolecules in femtomolar range -- 5.3.2 Bioprinting for cell patterning -- 5.3.3 Direct writing of microlenses -- 5.4 Pyro-EHD spinning -- 5.5 3D structures drawn by pyro-EHD -- 5.6 Future perspectives and conclusions -- References -- Further Reading -- 6 - Multilayered scaffolds for interface tissue engineering applications -- 6.1 Introduction -- 6.2 Graded electrospun scaffolds -- 6.3 Integration of electrospinning with other scaffold fabrication techniques. , 6.4 Multilayered scaffolds for orthopedic applications -- 6.5 Multilayered scaffolds for skin regeneration -- 6.6 Conclusions -- Acknowledgments -- References -- 7 - Airflow electrofluidodynamics -- 7.1 Introduction -- 7.2 What is airflow spinning? -- 7.2.1 Principles and parameters -- 7.2.1.1 Polymer solution and solvent -- 7.2.1.2 Air pressure -- 7.2.1.3 Working distance -- 7.2.1.4 Nozzle size -- 7.2.2 Advantages of the airflow spinning -- 7.2.3 Comparison between airflow spinning and electrospinning techniques -- 7.2.3.1 Viscosity of the polymer solution -- 7.2.3.2 Voltage and working distance -- 7.2.3.3 Conductivity of the polymer solution -- 7.2.3.4 Flow rate -- 7.3 Materials used for production of fibers by airflow spinning -- 7.3.1 Polymer membranes synthesized by airflow spinning -- 7.3.2 Composites synthesized by airflow spinning -- 7.4 Airflow spinning and its biomedical applications -- 7.4.1 Fiber scaffold applications in tissue regeneration -- 7.4.2 Surface coating by airflow spinning -- 7.4.3 3D scaffolds -- 7.5 Conclusions -- Acknowledgments -- References -- Further Reading -- 8 - Electrospinning and microfluidics: an integrated approach for tissue engineering and cancer -- 8.1 Electrospinning: an overview -- 8.2 Microfluidics in biomedical research -- 8.3 Hybrid systems -- 8.3.1 Hybrid tissue-engineered in vitro models -- 8.3.2 Hybrid lab-on-a-chip devices -- 8.3.3 Hybrid microfluidic platforms for cancer research -- 8.3.4 Other applications -- 8.4 Conclusions -- References -- 9 - Electrospun fibers for drug and molecular delivery -- 9.1 Overview -- 9.2 Methods for fiber loading and controlling drug release -- 9.2.1 Coelectrospinning -- 9.2.2 Adsorption/immobilization -- 9.2.3 Coaxial/multiaxial electrospinning -- 9.2.4 Emulsion electrospinning -- 9.3 Controlling drug-release kinetics: summary. , 9.4 Drug-loaded electrospun scaffolds: specific applications -- 9.4.1 Tissue regeneration -- 9.4.2 Nucleic acids delivery -- 9.4.3 Food engineering -- 9.5 Electrospun drug-loaded fibers in vivo -- 9.5.1 Wound healing -- 9.5.2 Cancer -- 9.5.3 Vascular applications -- 9.5.4 Bone regeneration -- 9.5.5 Mucosal administration -- 9.6 Concluding remarks -- References -- 10 - Additive electrospraying for scaffold functionalization -- 10.1 Introduction -- 10.2 Optimization of electrospraying process -- 10.2.1 Morphology -- 10.2.2 Molecular encapsulation -- 10.3 Technological strategies for scaffold functionalization -- 10.3.1 Sequential deposition -- 10.3.2 Simultaneous deposition -- 10.3.3 Drop- to-drop deposition -- 10.4 Potential application for tissue engineering -- 10.4.1 Functional coatings -- 10.4.2 Molecular gradients -- 10.4.3 Hierarchical scaffolds -- 10.4.4 Composite hydrogels -- Acknowledgments -- References -- 11 - Bioactive fibers for bone regeneration -- 11.1 Bone -- 11.1.1 Composition and structure -- 11.1.2 Bone healing and unconsolidated bone fractures -- 11.1.3 Strategies for bone consolidation: synthetic scaffolds -- 11.1.3.1 Biodegradable synthetic polymers -- 11.1.3.2 Bioglasses and bioceramics -- 11.1.3.3 Hybrids -- 11.2 Electrospinning -- 11.2.1 Polymer fiber mats -- 11.2.2 Inorganic fibers -- 11.2.3 Composite strategies -- 11.2.4 Hydrogels -- 11.3 Future trends -- Acknowledgments -- References -- 12 - Design of electrospun fibrous patches for myocardium regeneration -- 12.1 Introduction -- 12.2 The myocardium -- 12.3 Myocardial infarction and its treatment through traditional and advanced therapies -- 12.4 Myocardial patch requirements -- 12.4.1 Requirements of the scaffold-forming material -- 12.4.2 Scaffold requirements -- 12.4.2.1 Structural and surface properties -- 12.4.2.2 Mechanical properties. , 12.5 Selection of materials and fabrication technologies -- 12.6 Electrospun patches for myocardial tissue engineering/regenerative medicine -- 12.6.1 Electrospinning of natural polymers -- 12.6.2 Electrospinning of synthetic polymers -- 12.6.3 Electrospinning of bioartificial polymers -- 12.7 Conclusions and future trends -- Acknowledgments -- References -- 13 - Hydrogel fibrous scaffolds for accelerated wound healing -- 13.1 Introduction -- 13.1.1 Tissue engineering for accelerating wound healing -- 13.1.2 Hydrogel skin substitutes for accelerating wound healing -- 13.1.3 Electrospun substitutes for accelerating wound healing -- 13.1.4 Scope of electrospun hydrogel fibrous scaffold substitutes on wound healing -- 13.1.4.1 Electrospun PLC/gelatin nanofiber-hydrogel composite -- 13.1.4.2 Electrospun composite PLGA-gelatin-elastin scaffold -- 13.1.4.3 Electrospun chitosan-graft-PCL/PCL cationic nanofibrous mats -- 13.1.4.4 Electrospun photocross-linkable gelatin methacryloyl hydrogel fibrous scaffolds -- 13.1.4.5 Electrospun chitin nanofibers -- 13.1.4.6 Chitosan-collagen scaffolds -- 13.2 Fabrication of electrospun hydrogel fibrous scaffold -- 13.2.1 Fabrication of electrospun PLC/gelatin nanofiber-hydrogel composite -- 13.2.2 Fabrication of electrospun composite PLGA-gelatin-elastin scaffold -- 13.2.3 Fabrication of electrospun chitosan-graft-PCL/PCL cationic nanofibrous mats -- 13.2.4 Fabrication of photocross-linkable gelatin methacryloyl hydrogel fibrous scaffolds -- 13.2.5 Fabrication of electrospun chitin nanofibers -- 13.2.6 Fabrication of chitosan-collagen scaffolds -- 13.3 Physical characteristics of hydrogel fibrous scaffold -- 13.3.1 Morphology -- 13.3.2 Water permeability, water retention, and water vapor permeability -- 13.3.3 Mechanical properties -- 13.3.4 Degradation -- 13.4 Biological characteristics of hydrogel fibrous scaffold. , 13.4.1 Cell viability.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    almahu_9948212025002882
    Umfang: 1 online resource (565 pages)
    ISBN: 0-12-816902-8 , 0-12-816901-X
    Anmerkung: Front Cover -- Hydrogels and Polymer-based Scaffolds -- Copyright Page -- Contents -- List of Contributors -- Series Preface -- Preface -- 1 Interactions between tissues, cells, and biomaterials: an advanced evaluation by synchrotron radiation-based high-resolut... -- 1.1 Conduction, Induction, and Cell Transplantation in Tissue Engineering: The Limitations of Cross-talk Studies by Convent... -- 1.2 X-Ray Computed Microtomography: A Challenging Diagnostic Tool -- 1.3 Innovative Approaches to High-Resolution Tomography by Synchrotron Radiation -- 1.4 Skeletal Tissue Engineering -- 1.4.1 Bone -- 1.4.2 Cartilage -- 1.4.3 Tendons -- 1.5 Muscle Tissue Engineering -- 1.5.1 Skeletal Muscles -- 1.5.2 Heart -- 1.6 New Frontiers -- 1.6.1 Central and Peripheral Nervous System -- 1.6.2 Vascularization -- 1.7 Conclusions -- References -- Further Reading -- 2 Bioprinted scaffolds -- 2.1 Introduction -- 2.1.1 Prebioprinting -- 2.1.2 Bioprinting -- 2.1.3 Postbioprinting -- 2.1.4 Geometry of Scaffolds -- 2.1.5 Surface Properties -- 2.1.6 Pore Size -- 2.1.7 Adherence and Biocompatibility -- 2.1.8 Degradation Rates -- 2.2 Mechanical Properties -- 2.2.1 Hydrogel-Derived Scaffolds -- 2.2.2 Agarose hydrogel -- 2.2.3 Alginate hydrogel -- 2.2.4 Chitosan hydrogel -- 2.2.5 Cellulose hydrogel -- 2.2.6 Fibrin hydrogel -- 2.2.7 Gelatin/collagen hydrogel -- 2.2.8 Hyaluronic acid hydrogel -- 2.2.9 Matrigel hydrogel -- 2.2.10 Synthetic Hydrogels -- 2.3 Fibrous Polymer-Derived Scaffolds -- 2.4 Porous Polymer-Derived Scaffolds -- 2.5 Conclusion and Perspectives -- Acknowledgment -- References -- 3 Fundamentals of chitosan-based hydrogels: elaboration and characterization techniques -- 3.1 Introduction -- 3.2 Chitosan Nature and Main Properties -- 3.3 Fundamentals of Chitosan Hydrogels -- 3.3.1 Physical Hydrogels -- 3.3.2 Chemical Hydrogels -- 3.4 Characterization Techniques. , 3.4.1 Structural Analysis -- 3.4.1.1 Microstructural and spectroscopic analysis -- 3.4.1.2 Ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy -- 3.4.2 Property Measurements -- 3.4.2.1 Active compound release assessment -- 3.4.2.2 Mechanical resistance -- 3.4.2.3 Viscosity (sol-gel analysis) -- 3.4.2.4 Swelling index -- 3.4.2.5 Contact angle -- 3.4.2.6 Thermal analysis -- 3.4.3 Specific Properties for Biomedical Engineering Applications -- 3.4.3.1 Degradability -- 3.4.3.2 Cytotoxicity -- 3.5 Potential Applications and Future Trends of Chitosan Hydrogels -- References -- 4 Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers -- 4.1 Tissue Engineering -- 4.2 Scaffolds -- 4.3 Biomaterials -- 4.3.1 Polymeric Biomaterials -- 4.3.2 Bioreabsorbable Biopolymers -- 4.4 Poly(α-Hydroxy Acids) -- 4.5 Poly(α-Hydroxy Acids) Synthesis -- 4.6 Copolymerization of Poly(α-Hydroxy Acids) -- 4.7 Mechanisms of Degradation of Poly(α-Hydroxy Acids) -- 4.8 Biocompatibility -- 4.9 Toxicity of Poly(α-Hydroxy Acids) -- 4.9.1 In Vitro Cytotoxicity Tests -- 4.9.2 In Vitro Hemocompatibility Test -- 4.9.3 In Vivo Biocompatibility Tests -- 4.9.3.1 General tests for bone implants -- 4.9.3.2 General tests for stents -- 4.10 Applications of Poly(α-Hydroxy Acids)-PLA and PGA -- 4.10.1 Nonmedical Applications of Poly(α-Hydroxy Acids)-PLA and PGA -- 4.10.2 Medical Applications of Poly(α-Hydroxy Acids)-PLA and PGA -- 4.11 Future Trends in Biofabrication -- 4.11.1 Electrospinning -- 4.11.2 3D Bioprinting Rapid Prototyping -- 4.11.3 Bioresponsive Hydrogels -- 4.11.4 Biopolymer Composites in Tissue Engineering -- 4.12 Conclusions -- References -- Further Reading -- 5 Technological challenges and advances: from lactic acid to polylactate and copolymers -- 5.1 Lactic Acid -- 5.1.1 Factors That Influence Lactic Acid Production. , 5.1.2 Culture Medium for Lactic Fermentation: Alternative Sources of Carbon and Nitrogen -- 5.1.3 Production of Lactic Acid by Fermentation -- 5.1.4 Microorganisms Involved in the Production of Lactic Acid -- 5.1.5 Extraction and Purification of Lactic Acid -- 5.2 Poly(lactic Acid) -- 5.2.1 PLA Chemical and Physical Properties -- 5.2.2 PLA Synthesis -- 5.2.2.1 Chemical polymerization -- 5.2.2.2 Enzymatic polymerization: production of PLA directly by genetically modified microorganism -- 5.2.3 Kinds of Polymers, Copolymers, and Their Features -- 5.2.4 PLA Applications -- 5.2.5 PLA Market Development -- 5.2.6 PLA Biodegradation, Biocompatibility, and Toxicity -- 5.3 Conclusion -- References -- 6 PLGA scaffolds: building blocks for new age therapeutics -- 6.1 Challenges in New Age Therapeutic Strategies -- 6.2 Poly(Lactide-co-Glycolide): General Introduction -- 6.3 Poly(Lactide-co-Glycolide) Synthesis -- 6.4 Poly(Lactide-co-Glycolide) Properties -- 6.5 Poly(Lactide-co-Glycolide) Scaffolds for Bone Tissue Engineering -- 6.5.1 Porous Scaffolds -- 6.5.2 Fibrous Scaffolds -- 6.5.3 Hydrogels -- 6.5.4 Injectable Microparticles -- 6.6 Poly(Lactide-co-Glycolide) Scaffolds in Anticancer Therapy -- 6.7 Poly(Lactide-co-Glycolide) Interventions in Central Nervous System Delivery -- 6.8 Poly(Lactide-co-Glycolide) Strategies for Gene Therapy and Vaccine Delivery -- 6.9 Miscellaneous Poly(Lactide-co-Glycolide) Therapeutics -- 6.10 Conclusions and Future Trends -- Acknowledgments -- List of Symbols and Abbreviations -- References -- 7 Electrospun biomimetic scaffolds of biosynthesized poly(β-hydroxybutyrate) from Azotobacter vinelandii strains. cell viab... -- 7.1 Introduction -- 7.1.1 Polymers as Medical Devices -- 7.1.2 Shape Memory Polymers -- 7.1.3 Smart Polymeric Coatings -- 7.1.4 Electrospun Fibrous Scaffolds -- 7.1.5 Poly-β-Hydroxybutyrate. , 7.2 Methods of Characterization -- 7.2.1 Materials -- 7.2.2 Scaffold Fabrication -- 7.2.3 Fourier-Transformed Infrared Spectroscopy -- 7.2.4 Thermal Analysis -- 7.2.5 X-Ray Scattering -- 7.2.6 Small-Angle Light Scattering -- 7.2.7 Contact Angle -- 7.2.8 Polarized Optical Microscopy -- 7.2.9 Scanning Electron Microscopy -- 7.3 PHB Electrospun Fibrous Scaffolds -- 7.3.1 Scaffolds Morphology -- 7.3.2 Wetting Behavior -- 7.3.3 Aging -- 7.3.4 Sterilization Methods and Influence on Physical Properties -- 7.4 Cell Viability and Bone Tissue Regeneration -- 7.4.1 Cell Viability and HEK293 Cells -- 7.4.2 Bone Tissue Regeneration and Human Osteoblast Cells -- 7.5 Concluding Remarks -- Glossary of Terms -- References -- Further Reading -- 8 Polyurethane-based structures obtained by additive manufacturing technologies -- 8.1 Introduction -- 8.2 Bioresorbable Polyurethanes in Biomedical Devices -- 8.3 Additive Manufacturing for Biomedical Polyurethane Processing -- 8.3.1 Inkjet Printing -- 8.3.2 Extrusion-Based Methods -- 8.3.3 Particle Binding -- 8.4 Additive Manufacturing of Composite Polyurethanes -- 8.4.1 Inkjet Printing -- 8.4.2 Extrusion-Based Methods -- 8.4.2.1 Direct ink writing -- 8.4.2.1.1 Liquid-frozen deposition manufacturing -- 8.4.2.1.2 Double-nozzle low-temperature deposition manufacturing -- 8.4.2.1.3 Integrated organ printing -- 8.4.2.2 Fused deposition modeling -- 8.4.3 Particle Binding -- 8.5 Remarks and Perspectives -- Acknowledgment -- References -- 9 Composites based on bioderived polymers: potential role in tissue engineering: Vol VI: resorbable polymer fibers -- 9.1 Introduction -- 9.2 Polyesters -- 9.2.1 Poly(Lactic Acid) -- 9.2.1.1 Poly(lactic acid) fabrication -- 9.2.1.2 Poly(lactic acid) processing -- Drying and extrusion -- Injection molding -- Stretch blow molding -- Cast film and sheet -- Thermoforming -- Foaming. , 9.2.1.3 Poly(lactic acid) properties -- Physical proprties -- Thermal properties -- Mechanical properties -- 9.2.1.4 Poly(lactic acid) medical applications -- Wound healing and stents -- Scaffolds for tissue engineering -- Orthopedic implants and fixation devices -- Drug delivery -- 3D printing -- 9.2.2 Poly(lactic-co-glycolic acid) (PLGA) copolymers -- 9.2.2.1 Synthesis of PLGA -- 9.2.2.2 Properties of PLGA -- 9.2.2.3 Medical Applications of PLGA -- 9.3 Collagen -- 9.3.1 Collagen Bioactive Ceramic Composites -- 9.3.1.1 Collagen-HAP composites -- 9.3.1.2 Collagen TCP/BCP composites -- 9.3.1.3 Collagen-bioglass based composites -- 9.3.2 Medical Applications of Collagen -- 9.4 Silk Fibroin -- 9.4.1 Structure of Silk Fibroin -- 9.4.2 Processing of Silk Fibroin -- 9.4.2.1 Hydrogelation -- 9.4.2.2 Electrospinning -- 9.4.2.3 Porogen leaching -- 9.4.2.4 3D bioprinting -- 9.4.2.5 SF composites -- 9.4.3 Medical Applications of Silk Fibroin -- 9.4.3.1 SF scaffolds for tissue engineering -- 9.4.3.2 Delivery of bioactive molecules -- 9.4.3.3 Fixation devices -- 9.5 Biocellulose -- 9.5.1 Biocellulose Fibril Structure -- 9.5.2 Properties of Biocellulose -- 9.5.2.1 Mechanical properties -- 9.5.2.2 Biocompatibility -- 9.5.2.3 Hemocompatibility -- 9.5.2.4 Biodegradability -- 9.5.2.5 Nontoxicity -- 9.5.3 Biomedical Applications of Biocellulose -- 9.5.3.1 Substitute biomaterials for medical applications -- 9.5.3.2 Biocellulose-based scaffolds for bone tissue regeneration -- 9.5.3.3 Scaffolds for cell culture -- 9.5.3.4 Antimicrobial biomaterials -- 9.5.3.5 Drug delivery applications -- 9.5.3.6 Other biomedical applications -- 9.6 Conclusions -- References -- 10 Composite scaffolds for bone and osteochondral defects -- 10.1 Introduction -- 10.2 Biodegradable Matrices -- 10.3 Bioresorbable Matrices -- 10.4 Applications in Tissue Engineering. , 10.4.1 Composite Scaffolds for Bone.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Duxford, England :Woodhead Publishing,
    UID:
    almahu_9949232396202882
    Umfang: 1 online resource (618 pages).
    Ausgabe: Second edition.
    ISBN: 0-08-100752-3
    Serie: Woodhead Publishing Series in Biomaterials
    Originaltitel: Biomedical composites (Ambrosio)
    Anmerkung: Front Cover -- Biomedical Composites -- Copyright -- Contents -- List of contributors -- Introduction -- Chapter 1: Natural composites: The structure-function relationships of bone, cartilage, tendon/ligament, and the intervert ... -- 1.1 Introduction -- 1.2 Bone -- 1.2.1 Bone structure and composition -- 1.2.2 Bone cells and bone biology -- 1.2.3 Bone mechanics at multiple scales -- 1.3 Cartilage -- 1.3.1 Cartilage composition and biology -- 1.3.2 Cartilage mechanical behaviour -- 1.4 Tendon/ligament -- 1.4.1 Tendon/ligament composition and biology -- 1.4.2 Tendon/ligament mechanical behaviour -- 1.5 Intervertebral disc -- 1.5.1 Intervertebral disc composition and biology -- 1.5.2 Intervertebral disc mechanical behaviour -- 1.6 Conclusions: Lessons learned and implications for repair, replacements, and regeneration -- References -- Sources of additional information -- Chapter 2: Design and fabrication methods for biocomposites -- 2.1 Introduction -- 2.2 Production techniques for biocomposite parts -- 2.3 Conventional composite processing techniques -- 2.3.1 Extrusion and injection for thermoplastic materials -- 2.3.2 Filament winding -- 2.3.3 Compression -- 2.3.4 Infusion -- 2.3.5 Autoclaving -- 2.4 Solution-based techniques -- 2.4.1 Solvent casting -- 2.4.2 Phase separation -- 2.4.3 Electrospinning -- 2.5 AM technologies -- 2.6 Influence of the processing parameters on the material characteristics of biocomposites -- 2.7 Designing with biocomposites for tissue engineering applications -- 2.8 Conclusions -- References -- Chapter 3: Hard tissue applications of biocomposites -- 3.1 Introduction -- 3.2 Head and neck applications -- 3.2.1 Maxillofacial applications -- 3.2.2 Aural applications -- 3.2.3 Dental applications -- 3.3 Axial skeleton applications -- 3.3.1 Internal applications -- 3.3.2 External applications. , 3.4 Advantages in the use of composites for hard tissue applications -- 3.5 Disadvantages in the use of composites for hard tissue applications -- 3.6 Future trends -- References -- Chapter 4: Soft tissue application of biocomposites -- 4.1 The multiphase composition of natural tissues: Inspiration from living soft tissue composites -- 4.1.1 Soft tissues as structural composites -- 4.1.2 Soft tissues as composite hydrogels -- 4.1.3 Soft tissues as multifunctional composites -- 4.1.4 Biophysical cues of soft tissue composites -- 4.2 Engineered biocomposites for soft tissue application -- 4.2.1 Biomimetic and bioinspired structural biocomposites -- 4.2.2 Biocomposites to control molecular diffusion -- 4.2.2.1 Biocomposites to guide tissue regeneration -- 4.2.2.2 Biocomposites for cancer treatment -- 4.2.3 Multifunctional biocomposites -- 4.2.3.1 Electroactive soft biocomposites -- 4.2.3.2 Magnetic soft biocomposites -- 4.2.3.3 Micro and nanopatterned soft biocomposites -- 4.2.4 Composites to monitor biological signals -- 4.3 Conclusions: Engineered composites for soft tissues -- References -- Chapter 5: Composite materials for bone repair -- 5.1 Introduction -- 5.2 Component selection and general design considerations -- 5.3 Fabrication of particulate composites -- 5.4 Fabrication of nanocomposites -- 5.5 Composite scaffolds -- 5.6 Mechanisms for enhancing mechanical properties -- 5.7 Conclusions and future trends -- References -- Further Reading -- Chapter 6: Composite coatings for implants and tissue engineering scaffolds -- 6.1 Introduction -- 6.2 Types of composite coatings -- 6.2.1 Anti-wear coatings -- 6.2.2 Biocompatible coatings -- 6.2.3 AntiBacterial coatings -- 6.3 Synthesis of composite coatings -- 6.3.1 Chemical deposition -- 6.3.2 Electrophoretic deposition -- 6.3.3 Electrochemical deposition (anodising, electroplating). , 6.3.4 Biomimetic deposition -- 6.3.5 Other deposition methods -- 6.4 Smart composite coatings -- 6.5 Summary -- Acknowledgements -- References -- Chapter 7: Composite materials for spinal implants -- 7.1 Introduction -- 7.2 Structure and function of the spine -- 7.3 Materials and design of spinal implants: the state of the art -- 7.3.1 Interbody spacers -- 7.3.2 IVD prostheses -- 7.4 Composite materials: basic concepts -- 7.5 Polymer-based composite materials for spinal implants -- 7.5.1 Composite interbody fusion devices -- 7.5.2 Composite IVD prostheses -- 7.6 Conclusions and future trends -- References -- Further Reading -- Chapter 8: Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering -- 8.1 Introduction -- 8.1.1 Bone -- 8.1.1.1 Bone function and structure -- 8.1.1.2 Bone lesions -- 8.1.1.3 Current bone treatment options -- 8.1.2 Cartilage -- 8.1.2.1 Cartilage function and structure -- 8.1.2.2 Cartilage lesions -- 8.1.2.3 Current cartilage treatment options -- 8.1.3 Tissue engineering -- 8.1.3.1 Biomaterials for tissue engineering -- Collagen as a biomaterial for tissue engineering -- Chitosan -- Chitosan as a GAG analog -- Biocompatibility and degradation -- 8.1.3.2 Bone tissue engineering -- Collagen-based scaffolds for bone tissue engineering -- Commercially available collagen-based scaffolds for bone tissue engineering -- Chitosan scaffolds for bone repair -- Collagen/chitosan scaffolds as in vitro osteoid models -- 8.1.3.3 Cartilage tissue engineering -- Collagen-based scaffolds for cartilage tissue engineering -- Commercially available collagen-based scaffolds for cartilage tissue engineering -- Chitosan scaffolds for cartilage repair -- Collagen/chitosan composite scaffolds for cartilage tissue engineering -- 8.2 Conclusions and future perspectives -- References -- Further Reading. , Chapter 9: Acrylic bone cements for joint replacement -- 9.1 Introduction -- 9.2 A brief history of bone cement -- 9.3 Biomechanical properties of bone cement -- 9.3.1 Composition -- 9.3.2 Storage -- 9.3.3 Viscosity -- 9.3.4 Deformation -- 9.3.5 Thermal properties -- 9.3.6 Interdigitation -- 9.3.7 Cement curing -- 9.3.8 Cement application and the impact of the implant -- 9.4 Contemporary use: the role of bone cement in arthroplasty -- 9.4.1 Total Hip arthroplasty -- 9.4.2 Total knee arthroplasty -- 9.4.3 Total shoulder and total ankle arthroplasty -- 9.4.4 The role of bone cement in infection -- 9.4.5 Factors affecting antibiotic elution -- 9.4.6 Methods of mixing antibiotic-impregnated cement -- 9.5 Complications associated with bone cement -- 9.5.1 Aseptic loosening -- 9.5.2 Bone cement implantation syndrome -- 9.6 Conclusion -- References -- Chapter 10: Composite materials for ligaments and tendons replacement -- 10.1 Introduction -- 10.2 Ligaments and tendons: Tissue biology and anatomy -- 10.3 State of the art on proposed devices for ligaments and tendons replacement -- 10.4 Fibre-reinforced composite materials: Fundamentals and technology -- 10.4.1 Principles of soft composite design -- 10.5 Composite materials for tissue replacement and tissue-engineered scaffolds -- 10.6 Conclusion and prospective about composite materials for ligaments and tendons replacement and regeneration -- References -- Further Reading -- Chapter 11: Composite materials for hip joint prostheses -- 11.1 Introduction -- 11.2 Properties of the hip joint -- 11.3 Materials for hip arthroplasty -- 11.3.1 Composite bone cements -- 11.3.2 Materials for acetabular cups -- 11.3.2.1 Hydroxyapatite-reinforced polymers for acetabular cups -- 11.3.3 Materials for hip stem -- 11.4 Polymer-based composite hip -- 11.4.1 Stem technologies -- 11.4.2 Polymer-based composite femoral stem. , 11.4.3 Modelling -- 11.4.4 In vitro testing -- 11.5 Future trends -- References -- Further Reading -- Chapter 12: 3D printing of biocomposites for osteochondral tissue engineering -- 12.1 Introduction -- 12.2 Osteochondral tissue -- 12.3 Scaffold requirements -- 12.3.1 Biocompatibility -- 12.3.2 Biomimicry -- 12.3.3 Biodegradation -- 12.3.4 Scaffold architecture and mechanical properties -- 12.3.5 Printability -- 12.3.6 Clinical translation -- 12.4 Materials -- 12.4.1 Natural polymers -- 12.4.2 Synthetic polymers -- 12.4.3 Inorganic materials -- 12.4.4 Biological materials -- 12.5 3D printing techniques -- 12.5.1 Inkjet printing -- 12.5.2 Extrusion-based printing -- 12.5.3 Powder-bed fusion -- 12.5.4 Vat-photopolymerisation process -- 12.5.5 Melt electrospinning writing -- 12.6 Future challenges -- 12.7 Conclusion -- Acknowledgements -- References -- Chapter 13: The challenge of biocompatibility evaluation of biocomposites -- 13.1 Introduction -- 13.2 Biocomposites -- 13.3 Do we need biocompatibility evaluation? -- 13.3.1 Data collection from scientific literature -- 13.3.2 Data collection from materials suppliers/industries -- 13.3.3 Data collection from analytical analyses -- 13.3.4 Data collection from clinical analyses -- 13.4 Selection of biocompatibility analyses/biological test methods -- 13.4.0.1 Cytotoxicity or cell viability -- 13.4.1 Sensitisation -- 13.4.2 Irritation -- 13.4.3 Acute systemic toxicity and subchronic tests -- 13.4.4 Genotoxicity -- 13.4.5 Implantation and hemocompatibility -- 13.4.6 Biodegradation -- 13.5 Biocomposites-based biocompatibility studies -- 13.6 Biocompatibility and the implantation of a biocomposite in a biological environment -- 13.7 Concluding remarks and future perspectives -- Acknowledgements -- References -- Further Reading -- Chapter 14: Cellular response to biocomposites -- 14.1 Introduction. , 14.1.1 Biocomposites: two different meanings with a common feature.
    Weitere Ausg.: ISBN 0-08-100759-0
    Weitere Ausg.: ISBN 1-306-38273-4
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    London, England :Academic Press,
    UID:
    almahu_9949232400202882
    Umfang: 1 online resource (326 pages)
    ISBN: 0-12-813510-7
    Anmerkung: Front Cover -- MATLAB® Programming for Biomedical Engineers and Scientists -- Copyright -- Dedication -- Contents -- About the Authors -- Preface -- Aims and Motivation -- Learning Objectives -- How to Use This Book -- Acknowledgments -- 1 Introduction to Computer Programming and MATLAB -- 1.1 Introduction -- 1.1.1 Computer Programming -- 1.1.2 MATLAB -- 1.2 The MATLAB Environment -- 1.3 Help -- 1.4 Variables, Arrays and Simple Operations -- 1.5 Data Types -- 1.6 Loading and Saving Data -- 1.7 Visualizing Data -- 1.8 Curve Fitting -- 1.9 Matrices -- 1.10 MATLAB Scripts -- 1.11 Comments -- 1.12 Debugging -- 1.12.1 MATLAB Debugger -- 1.12.2 MATLAB Code Analyzer -- 1.13 Summary -- 1.14 Further Resources -- Exercises -- 2 Control Structures -- 2.1 Introduction -- 2.2 Conditional if Statements -- 2.3 Comparison/Logical Operators -- 2.4 Conditional switch Statements -- 2.5 Iteration: for Loops -- 2.6 Iteration: while Loops -- 2.7 A Note about Ef ciency -- 2.8 break and continue -- 2.9 Nesting Control Structures -- 2.10 Summary -- 2.11 Further Resources -- Exercises -- 3 Functions -- 3.1 Introduction -- 3.2 Functions -- 3.3 Checking for Errors -- 3.4 Function m-Files and Script m-Files -- 3.5 A Function m-File Can Contain More than One Function -- 3.6 A Script m-File Cannot Also Include Functions -- 3.7 m-Files and the MATLAB Search Path -- 3.8 Naming Rules -- 3.9 Scope of Variables -- Be Careful About Script m-Files and Scope -- 3.10 Recursion: A Function Calling Itself -- 3.11 Summary -- 3.12 Further Resources -- Exercises -- 4 Program Development and Testing -- 4.1 Introduction -- 4.2 Incremental Development -- 4.3 Are We Finished? Validating User Input -- 4.4 Debugging a Function -- 4.5 Common Reasons for Errors when Running a Script or a Function -- 4.6 Error Handling -- 4.6.1 The error and warning Functions -- 4.6.2 The try and catch Method. , 4.7 Summary -- 4.8 Further Resources -- Exercises -- 5 Data Types -- 5.1 Introduction -- 5.2 Numeric Types -- 5.2.1 Precision for Non-Integer (Floating Point) Numeric Types -- 5.2.2 MATLAB Defaults to Double Precision for Numbers -- 5.2.3 How Does MATLAB Display Numeric Values by Default? -- 5.2.4 Take Care when Working with Numeric Types Other than Doubles -- 5.2.5 Ranges of Numeric Types -- 5.3 In nity and NaN (Not a Number) -- 5.4 Characters and Strings -- 5.5 Identifying the Type of a Variable -- 5.6 The Boolean Data Type -- 5.7 Cells and Cell Arrays -- 5.7.1 Cell Arrays Can Contain Mixed Data Types -- 5.7.2 The Different Kinds of Bracket: Recap -- 5.8 Converting Between Types -- 5.8.1 Converting Between a Number and a Character -- 5.8.2 Converting Between a Number and a Logical Type -- 5.8.3 Converting Arrays -- 5.9 The Structure Data Type -- 5.10 Summary -- 5.11 Further Resources -- Exercises -- 6 File Input/Output -- 6.1 Introduction -- 6.2 Recap on Basic Input/Output Functions -- 6.3 Simple Functions for Dealing with Text Files -- 6.4 Reading from Files -- 6.5 Writing to Files -- 6.6 Summary -- 6.7 Further Resources -- Exercises -- 7 Program Design -- 7.1 Introduction -- 7.2 Top-Down Design -- Step 1 - First Level Factoring -- Step 2 - Further Factoring -- Step 3 - Further Factoring -- Step 4 - Write Pseudocode -- 7.2.1 Incremental Development and Test Stubs -- 7.3 Bottom-Up Design -- 7.4 A Combined Approach -- 7.5 Alternative Design Approaches -- 7.6 Summary -- 7.7 Further Resources -- Exercises -- 8 Visualization -- 8.1 Introduction -- 8.2 Visualization -- 8.2.1 Visualizing Multiple Datasets -- 8.2.2 3-D Plotting -- 8.2.3 The meshgrid Command -- 8.2.4 Imaging Data -- 8.3 Summary -- 8.4 Further Resources -- Exercises -- 9 Code Ef ciency -- 9.1 Introduction -- 9.2 Time and Memory Ef ciency -- 9.2.1 Timing Commands in MATLAB. , 9.2.2 Assessing Memory Ef ciency -- 9.3 Tips for Improving Time Ef ciency -- 9.3.1 Pre-Allocating Arrays -- 9.3.2 Avoiding Loops -- 9.3.3 Logical Indexing -- 9.3.4 A Few More Tips for Ef cient Code -- 9.4 Recursive and Dynamic Programming -- 9.4.1 A Note on the Depth of Recursive Function Calls -- 9.5 Dynamic Programming to Improve Performance -- 9.6 Summary -- 9.7 Further Resources -- Exercises -- 10 Signal and Image Processing -- 10.1 Introduction -- 10.2 Storing and Reading 1-D Signals -- 10.3 Processing 1-D Signals -- 10.4 Convolution -- 10.4.1 Convolution: More Detail -- 10.5 Image Data: Storing and Reading -- 10.6 Accessing Images in MATLAB -- 10.6.1 Color Versus Gray Scale Images -- 10.6.2 Getting Information About an Image -- 10.6.3 Viewing an Image -- 10.6.4 Accessing the Pixel Data for an Image -- 10.6.5 Viewing and Saving a Sub-Region of an Image -- 10.7 Image Processing -- 10.7.1 Binarizing a Gray Scale Image and Saving the Result -- 10.7.2 Threshold-Based Operations -- 10.7.3 Chaining Operations -- 10.7.4 Image Data Type, Value Range, and Display -- 10.8 Image Filtering -- 10.8.1 The Mean Filtering Operation -- 10.8.2 The Actual Filter Used -- 10.8.3 Applying a Filter in MATLAB -- 10.8.4 Filtering and Convolution -- 10.9 Summary -- 10.10 Further Resources -- Exercises -- 11 Graphical User Interfaces -- 11.1 Introduction -- 11.2 Graphical User Interfaces in MATLAB -- 11.2.1 Building a GUI with the Guide Tool -- 11.2.2 Controlling Components: Events and Callback Functions -- 11.2.3 Maintaining State and Avoiding Duplicated Code -- 11.2.4 Tidying Up -- 11.3 Handles -- 11.4 Summary -- 11.5 Further Resources -- Exercises -- 12 Statistics -- 12.1 Introduction -- 12.2 Descriptive Statistics -- 12.2.1 Univariate Data -- 12.2.2 Bivariate Data -- 12.3 Inferential Statistics -- 12.3.1 Testing the Distributions of Data Samples. , 12.3.2 Comparing Data Samples -- 12.4 Summary -- 12.5 Further Resources -- Exercises -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 0-12-812203-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    almahu_9949704582002882
    Umfang: 1 online resource (563 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780128245521 , 0-12-824553-0
    Inhalt: 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, Second Edition provides an in-depth introduction to bioprinting and nanotechnology and their industrial applications. Sections cover 4D Printing Smart Multi-responsive Structure, Cells for Bioprinting, 4D Printing Biomaterials, 3D/4D printing functional biomedical devices, 3D Printing for Cardiac and Heart Regeneration, Integrating 3D printing with Ultrasound for Musculoskeletal Regeneration, 3D Printing for Liver Regeneration, 3D Printing for Cancer Studies, 4D Printing Soft Bio-robots, Clinical Translation and Future Directions.
    Anmerkung: Front Cover -- 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Principles -- 1 Nanotechnology: A Toolkit for Cell Behavior -- 1.1 INTRODUCTION -- 1.2 NANOBIOMATERIALS FOR TISSUE REGENERATION -- 1.2.1 CARBON NANOBIOMATERIALS -- 1.2.1.1 Carbon Nanotubes -- 1.2.1.2 Carbon Nanofibers -- 1.2.1.3 Graphene -- 1.2.2 SELF-ASSEMBLING NANOBIOMATERIALS -- 1.2.2.1 Self-Assembling Nanotubes -- 1.2.2.2 Self-Assembling Nanofibers -- 1.2.3 POLYMERIC AND CERAMIC NANOBIOMATERIALS -- 1.2.3.1 Polymeric Nanobiomaterials -- 1.2.3.2 Ceramic Nanobiomaterials and Ceramic-Polymer Nanocomposites -- 1.3 3D NANO/MICROFABRICATION TECHNOLOGY FOR TISSUE REGENERATION -- 1.3.1 3D NANOFIBROUS AND NANOPOROUS SCAFFOLDS FOR TISSUE REGENERATION -- 1.3.1.1 Electrospun Nanofibrous Scaffolds for Tissue Regeneration -- 1.3.1.2 Other 3D Nanofibrous/Nanoporous Scaffolds for Tissue Regeneration -- 1.3.2 3D PRINTING OF NANOMATERIAL SCAFFOLDS FOR TISSUE REGENERATION -- 1.3.2.1 3D Printing Techniques for Tissue Regeneration -- 1.3.2.2 3D Printing of Nanomaterial Scaffolds for Tissue Regeneration -- 1.4 CONCLUSION AND FUTURE DIRECTIONS -- Acknowledgments -- Questions -- References -- 2 Bioprinting of Biomimetic Tissue Models for Disease Modeling and Drug Screening -- 2.1 Introduction -- 2.2 Current 3D Bioprinting Approaches to Build Biomimetic Tissue Models -- 2.2.1 Current 3D Bioprinting Technology -- 2.2.1.1 Inkjet-Based Bioprinting -- 2.2.1.2 Extrusion-Based Bioprinting -- 2.2.1.3 Light-Based Bioprinting -- 2.2.1.3.1 TPP-Based Bioprinting -- 2.2.1.3.2 DLP-Based Bioprinting -- 2.2.2 Cell Source and Preparation -- 2.2.3 Biomaterial Choice -- 2.3 Drug Screening and Disease Modeling Applications in Various Organs -- 2.3.1 Liver Models -- 2.3.2 Cardiac and Skeletal Muscle Models. , 2.3.2.1 Cardiac Muscle -- 2.3.2.2 Skeletal Muscle Models -- 2.3.3 Cancer Models -- 2.4 Challenges and Future Outlook -- Acknowledgments -- Declaration of Interests -- References -- 3 3D BIOPRINTING TECHNIQUES -- 3.1 Introduction -- 3.2 Definition and Principles of 3D Bioprinting -- 3.3 3D Bioprinting Technologies -- 3.3.1 Ink-Jet-Based Bioprinting -- 3.3.2 Pressure-Assisted Bioprinting -- 3.3.3 Laser-Assisted Bioprinting -- 3.3.4 Solenoid Valve-Based Printing -- 3.3.5 Acoustic-Jet Printing -- 3.4 Challenges and Future Development of 3D Bioprinting -- 3.5 Conclusion -- References -- 4 The Power of CAD/CAM Laser Bioprinting at the Single-Cell Level: Evolution of Printing -- 4.1 Introduction -- 4.1.1 Direct Contact Versus Direct Write for Single-Cell Printing -- 4.2 Basics of Laser-Assisted Printing: Overview of Systems and Critical Ancillary Materials -- 4.2.1 Laser-Assisted Cell Transfer System Components -- 4.2.2 Absorbing Film-Assisted Laser-Induced Forward Transfer -- 4.2.3 Matrix-Assisted Pulsed-Laser Evaporation Direct Write -- 4.2.4 Ancillary Materials -- 4.3 Matrix-Assisted Pulsed-Laser Evaporation Direct-Write Mechanistics -- 4.3.1 Modeling Cellular Droplet Formation -- 4.3.1.1 Modeling Bubble Formation-Induced Process Information -- 4.3.1.2 Modeling Laser-Matter Interaction Induced Thermoelastic Stress -- 4.3.2 Modeling of Droplet Landing Process -- 4.4 Postprocessing Cell Viability and Function -- 4.5 Case Studies and Applications Illustrating the Importance of Single-Cell Deposition -- 4.5.1 Isolated-Node, Single-Cell Arrays -- 4.5.2 Network-Level, Single-Cell Arrays -- 4.5.3 Next-Generation Single-Cell Arrays: Integrated, Computation-Driven Analysis -- 4.5.4 Example of Single-Cell Array via Matrix-Assisted Pulsed-Laser Evaporation Direct Write -- 4.5.5 Laser Direct Write for Neurons -- 4.5.5.1 Neural Development. , 4.5.5.2 Engineered Circuits -- 4.5.5.3 Nonneuronal Interactions -- 4.5.5.4 Outlook -- 4.6 Conclusion -- References -- 5 Laser Direct-Write Bioprinting: A Powerful Tool for Engineering Cellular Microenvironments -- 5.1 Introduction -- 5.1.1 Spatial Influences of the Cellular Microenvironment -- 5.1.2 Overview of Printing Techniques for Engineering Cellular Microenvironments -- 5.1.3 Laser Direct-Write Overview -- 5.2 Materials in Laser Direct-Write -- 5.2.1 Material Properties Influencing Cellular Microenvironments -- 5.2.2 Matrigel-Based Laser Direct-Write -- 5.2.3 Gelatin-Based Laser Direct-Write -- 5.2.4 Dynamic Release Layers -- 5.2.5 Additional Hydrogels Used for Printing and the Receiving Substrate -- 5.2.6 Nonhydrogel Receiving Substrates and Synergistic Technologies -- 5.3 Laser Direct-Write Applications in 2D -- 5.4 Laser Direct-Write Applications in 3D -- 5.4.1 Microenvironments in 3D -- 5.4.2 Layer-By-Layer Approaches -- 5.4.3 Laser Direct-Write Microbeads -- 5.4.4 Fabrication of Core-Shelled Microenvironments -- 5.5 Conclusions and Future Directions -- Acknowledgments -- Questions -- References -- 6 Bioink Printability Methodologies for Cell-Based Extrusion Bioprinting -- 6.1 Introduction -- 6.2 Definition of Printability -- 6.2.1 Consideration on Novel Bioink Development -- 6.2.2 Measures of Printability -- 6.3 Relationships Between Printing Outcomes and Rheological Properties -- 6.3.1 Extrudability -- 6.3.2 Filament Classification -- 6.3.3 Shape Fidelity -- 6.3.4 Impact of Cell Density on Printing Outcomes -- 6.4 Relationships Between Printing Outcomes and Process Parameters -- 6.4.1 Process Parameters -- 6.4.2 Improving Printability by Process Parameters -- 6.5 Models for Printability -- 6.6 Current Limitations -- 6.7 Conclusion -- Acknowledgments -- Questions -- References -- 7 Hydrogels for Bioprinting -- 7.1 Hydrogels in Bioprinting. , 7.1.1 Natural Hydrogel -- 7.1.1.1 Collagen -- 7.1.1.2 Gelatin -- 7.1.1.3 Fibrin -- 7.1.1.4 Alginate -- 7.1.1.5 Chitosan and Chitin -- 7.1.1.6 Hyaluronic Acid -- 7.1.1.7 Decellularized Extracellular Matrix -- 7.1.2 Synthetic Hydrogel -- 7.1.2.1 Poly(2-Hydroxyethyl Methacrylate) -- 7.1.2.2 Poly(vinyl alcohol) -- 7.1.2.3 Poly(ethylene glycol) -- 7.1.2.4 Poly(lactic acid) -- 7.1.2.5 Poloxamers -- 7.1.3 Bioinspired Synthetic Hydrogel -- 7.2 Considerations for Using Hydrogel in Bioprinting -- 7.2.1 General Consideration -- 7.2.1.1 Biocompatibility -- 7.2.1.2 Water Content -- 7.2.1.3 Swelling Behavior -- 7.2.1.4 Solute Transportation -- 7.2.1.5 Degradation -- 7.2.2 Technology Specific Consideration -- 7.2.2.1 Material Extrusion -- 7.2.2.1.1 Material Consideration -- 7.2.2.1.2 Process Consideration -- 7.2.2.2 Material Jetting -- 7.2.2.2.1 Material Consideration -- 7.2.2.2.2 Process Consideration -- 7.2.2.3 Vat Polymerization -- 7.2.2.3.1 Material Consideration -- 7.2.2.3.2 Process Consideration -- 7.3 Strategies Used in Hydrogel-Based Bioprinting -- 7.3.1 Tuning Rheology of Bioink -- 7.3.2 Inducing Crosslinking during Bioprinting -- 7.3.3 Crosslinking after Bioprinting -- 7.3.4 Bioprinting with Support -- 7.3.5 Hybrid Bioprinting -- 7.4 Perspective and Outlook -- References -- 8 4D Printing: 3D Printing of Responsive and Programmable Materials -- 8.1 INTRODUCTION -- 8.2 RESPONSIVE AND PROGRAMMABLE MATERIALS FOR 4D PRINTING -- 8.2.1 SHAPE-MEMORY POLYMERS -- 8.2.2 RESPONSIVE SHAPE-CHANGING POLYMERS AND THEIR COMPOSITES -- 8.3 REALIZATION OF 4D PRINTING -- 8.3.1 4D PRINTING BASED ON FUSION DEPOSITION MODELING -- 8.3.2 4D PRINTING BY DIRECT INK WRITING -- 8.3.3 4D PRINTING BY PHOTOPOLYMERIZATION -- 8.4 APPLICATIONS OF 4D PRINTING -- 8.4.1 BIOMEDICAL APPLICATIONS -- 8.4.1.1 Tissue Engineering -- 8.4.1.2 Implantable Devices -- 8.4.2 SOFT ROBOTS. , 8.4.3 FLEXIBLE ELECTRONICS -- 8.4.4 FOOD PROCESSING -- 8.5 CONCLUSION AND PROSPECTIVE -- QUESTIONS -- References -- II. Applications: Nanotechnology and 3D Bioprinting for Tissue/Organ Regeneration -- 9 Blood Vessel Regeneration -- 9.1 Introduction -- 9.1.1 Additive Manufacturing -- 9.1.2 Important Proteins for Vasculature -- 9.1.3 Application to Vascular Implants -- 9.2 Cell-Free Scaffolds -- 9.2.1 Electrospinning -- 9.2.2 Stereolithography -- 9.2.3 Fused-Deposition Modeling -- 9.3 Cell-Based Scaffolds -- 9.3.1 Inkjet Printing -- 9.3.2 Extrusion-Based Bioprinting -- 9.3.2.1 Coaxial Printing -- 9.3.3 Laser-Assisted Printing -- 9.4 Comparison of the Technologies -- 9.4.1 Applications to the Vascular System and Other Tissue-Engineered Implants -- 9.5 Future Directions -- Acknowledgments -- References -- 10 3D PRINTING AND PATTERNING VASCULATURE IN ENGINEERED TISSUES -- 10.1 Introduction -- 10.1.1 Macroporous Constructs as Tissue Templates -- 10.1.2 Fabricating Fluidic Networks within Biomaterials -- 10.1.3 Approaches to Fabricate Endothelialized and Cell-Laden Tissue Constructs -- 10.1.4 Approaches to Integrate Patterned Vasculature In Vivo -- 10.1.5 Patterning Multiscale Vasculature with Endothelial Function -- 10.1.6 Angiogenesis, Vasculogenesis, and In Vivo Integration -- 10.1.7 Advanced Technologies which May Assist in Vascular Tissue Fabrication -- References -- 11 Craniofacial and Dental Tissue -- 11.1 Introduction -- 11.2 Clinical Need for Craniofacial and Dental Regenerative Medicine -- 11.2.1 Major Diagnoses and Causes -- 11.2.1.1 Dental Disease -- 11.2.1.2 Trauma -- 11.2.1.3 Aging -- 11.2.1.4 Cancer -- 11.2.1.5 Congenital -- 11.2.2 Standard-of-Care Procedures -- 11.2.2.1 Teeth -- 11.2.2.2 Bone and Cartilage -- 11.2.2.3 Soft Tissue -- 11.3 Craniofacial and Dental Regenerative Medicine Research -- 11.3.1 Novel Materials -- 11.3.2 Teeth. , 11.3.3 Bone.
    Weitere Ausg.: Print version: Zhang, Lijie Grace 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine San Diego : Elsevier Science & Technology,c2022
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Amsterdam, [Netherlands] :William Andrew,
    UID:
    almahu_9948025592102882
    Umfang: 1 online resource (0 p.)
    ISBN: 0-323-35405-X , 0-323-35321-5
    Serie: Micro & Nano Technologies Series
    Anmerkung: Description based upon print version of record. , Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Foreword: Here, a small step toward a grand vision -- Introduction -- References -- 1 - Laser Direct Writing for Additive Micro-Manufacturing -- Chapter 1.1 - Laser-based micro-additive manufacturing technologies -- 1 - Beyond photolithography: direct-write microfabrication -- 2 - Introduction to nonlithographic microfabrication techniques -- 3 - Laser-based microfabrication -- 3.1 - Advantages of laser-based techniques for 3D microfabrication -- 3.2 - Laser micromachining -- 4 - Laser-based additive microfabrication -- 4.1 - Laser chemical vapor deposition -- 4.2 - Laser-induced forward transfer -- 5 - 2D microfabrication by LIFT -- 5.1 - Printing of functional materials -- 5.1.1 - LIFT of nanoinks -- 5.1.2 - LIFT of entire functional devices -- 5.2 - Printing of high-viscosity nanopastes for congruent transfers -- 5.3 - Printing of freestanding structures -- 6 - 3D microfabrication by LIFT -- 7 - Parallelizing the LIFT process -- 8 - Summary -- Acknowledgments -- References -- Chapter 1.2 - Microstereolithography -- 1 - Introduction -- 2 - Rapid prototyping and stereolithography -- 3 - Improving stereolithography resolution -- 3.1 - Reducing the thickness of the layers -- 3.2 - Avoiding local degradations of the vertical resolution -- 3.3 - Improving the lateral resolution -- 4 - Microstereolithography techniques based on a scanning principle -- 5 - Microstereolithography techniques based on a projection principle -- 6 - Microstereolithography processes having a submicrometer resolution -- 6.1 - Two-photon microstereolithography -- 6.2 - One-photon under-the-surface microstereolithography -- 7 - Microfabrication with microstereolithography -- 7.1 - Microstereolithography components containing inserts -- 7.2 - Microstereolithography of composite materials. , 7.3 - Microstereolithography components for biomedical applications -- 8 - Conclusions -- References -- Chapter 1.3 - Fundamentals of two-photon fabrication -- 1 - Introduction -- 2 - Nonlinear absorption -- 3 - Photoresists -- 4 - Direct fabrication in other materials -- 5 - Other strategies -- References -- Chapter 2 - Free radical photopolymerization of multifunctional monomers -- 1 - Introduction -- 2 - Polymerization stages and rate equations -- 3 - Effect of diffusional processes on propagation and termination steps -- 3.1 - Linear systems -- 3.2 - Cross-linking systems -- 4 - Effect of polymerization conditions on the polymerization kinetics -- 4.1 - Viscosity effect -- 4.2 - Oxygen effect -- 4.3 - Polymerization in the dark (postcuring effect) -- 5 - Effect of monomer functionality and structure -- 6 - Concluding remarks -- Acknowledgment -- References -- Chapter 3 - Reaction mechanisms and in situ process diagnostics -- 1 - Introduction -- 2 - Initiation -- 2.1 - Threshold behavior -- 2.2 - Multiphoton absorption -- 2.3 - Excitation mechanisms -- 2.4 - Sample heating -- 3 - Polymerization -- 3.1 - Monomer conversion -- 3.2 - Oxygen inhibition -- 3.3 - Diffusion processes -- 3.4 - Polymerization kinetics -- 4 - Conclusions -- References -- Chapter 4 - Mask-directed micro-3D printing -- 1 - Introduction -- 2 - Conventional micro-3D printing systems -- 2.1 - General considerations -- 2.2 - Common sources and optics -- 2.3 - Translational elements -- 2.4 - Reagent considerations -- 2.5 - Limitations of conventional micro-3D printing -- 3 - Mask-directed micro-3D printing -- 3.1 - Mask-directed system basics -- 3.2 - Transition from physical to digital masks -- 3.3 - Extended MDML technologies: multifocal and long-scan approaches -- 4 - Conclusions and considerations toward the future -- References. , Chapter 5 - Geometric analysis and computation using layered depth-normal images for three-dimensional microfabrication -- 1 - Introduction -- 2 - Background and related work -- 3 - Layered depth-normal images and related computational framework -- 3.1 - Layered depth-normal image -- 3.2 - A LDNI-based geometric computational framework -- 4 - Conversion between LDNIs and polygonal meshes -- 4.1 - Construction of LDNIs: from B-rep to LDNIs -- 4.2 - Contouring algorithm: from LDNIs to two-manifold polygonal meshes -- 5 - LDNI-based geometric operations -- 5.1 - LDNI-based uniform offsetting -- 5.2 - LDNI-based regulation operator -- 5.3 - LDNI-based Boolean operation -- 5.4 - Robustness enhancement -- 6 - Applications in 3D microfabrication and others -- 6.1 - Complex truss structure design and fabrication -- 6.2 - 3D model shelling and shrinkage compensation -- 6.3 - Tool path planning - 2D slicing and XY compensation -- 6.4 - Tool path planning - Z compensation -- 6.5 - Manufacturability analysis of 3D models -- 7 - Summary and outlook -- Acknowledgment -- References -- Chapter 6 - Motion systems: an overview of linear, air bearing, and piezo stages -- 1 - Terminology -- 1.1 - Introduction -- 1.2 - Definitions -- 1.3 - Motion control coordinate system -- 1.4 - Resolution -- 1.5 - Minimum incremental motion -- 1.6 - Accuracy -- 1.7 - Repeatability -- 1.8 - Reversal error - backlash/hysteresis -- 1.9 - Runout of a linear stage - straightness/flatness -- 1.10 - Angular runout of a linear stage - pitch/yaw/roll -- 1.11 - Position stability -- 1.12 - Load capacity - centered/transverse/axial -- 1.13 - Stiffness - axial stiffness/angular stiffness -- 1.14 - Speed stability -- 1.15 - Mean time between failure -- 2 - Mechanical components -- 2.1 - Introduction -- 2.2 - Guide -- 2.2.1 - Linear ball bearings -- 2.2.2 - Linear roller bearings. , 2.2.3 - Air bearings -- 2.2.4 - Flexures -- 2.2.5 - Kinematics -- 2.3 - Driving -- 2.3.1 - Lead screw -- 2.3.2 - Ball screws -- 2.3.3 - Ironcore linear motor -- 2.3.4 - Ironless linear motor -- 2.3.5 - Piezo drive -- 3 - Controller -- 3.1 - Some principal equations -- 3.2 - Trajectory -- 3.3 - Reading position -- 3.4 - Driver -- 3.5 - Corrector -- 3.6 - Mapping -- 3.7 - General considerations for laser micromachining -- References -- Chapter 7 - Focusing through high-numerical aperture objective -- 1 - Introduction of diffraction and optical imaging -- 2 - Focusing through high-NA objective: scalar optical fields -- 3 - Focusing through high-NA objective : spatially homogeneously polarized optical fields -- 4 - Focusing through high-NA objective: vectorial optical fields -- 5 - Focus engineering with vectorial optical fields -- 6 - Aberrations and mitigations -- 7 - Discussion and summary -- References -- Chapter 8 - Linewidth and writing resolution -- 1 - Introduction -- 2 - Linewidth -- 3 - Writing resolution -- 4 - Two-beam strategy -- 4.1 - General concept -- 4.2 - Mechanisms of polymerization inhibition -- 4.2.1 - Stimulated emission -- 4.2.2 - Triplet absorption -- 4.2.3 - Resolution augmentation through photoinduced deactivation -- 4.2.4 - Photoinhibition -- 5 - Diffusion-assisted approach -- 6 - Conclusions -- References -- Chapter 9 - Making two-photon polymerization faster -- 1 - Motivation for faster fabrication -- 2 - Typical speeds of current fabrication methods -- 3 - Chemical methods to increase speed -- 3.1 - Not all dosages are equal -- 3.2 - A wide dynamic range is critical for fast processing -- 3.3 - Custom initiators offer a wide dynamic range -- 3.4 - Role of thermal accumulation and avalanche ionization -- 3.5 - Conclusions -- 4 - Physical methods to increase speed -- 4.1 - Writing with multiple static beams. , 4.2 - Writing with multiple dynamic beams -- 4.3 - Replication of microstructures by molding -- 4.4 - Conclusions -- 5 - Engineering methods to increase speed -- 5.1 - Fabrication using galvo mirrors -- 5.2 - Fabrication using 3D translation stages -- 5.3 - Conclusions -- 6 - The future of fast writing -- References -- Chapter 10 - Microstructures, post-TPP processing -- 1 - Introduction -- 2 - Chemical modification of fabricated polymer surfaces -- 2.1 - Single polymer functionalization -- 2.2 - Selective functionalization -- 3 - Double inversion -- 4 - Atomic layer deposition -- 5 - Electroplating template -- 6 - Pyrolysis -- 7 - Multiphoton-induced spatially resolved functionalization -- 8 - Conclusions -- References -- Chapter 11 - A collection of microsculptures -- References -- 12 - Applications -- Chapter 12.1 - 3D micro-optics via ultrafast laser writing: miniaturization, integration, and multifunctionalities -- 1 - Introduction -- 2 - Optical materials -- 2.1 - Transmittance, refractive index, and extinction coefficient of polymers (SZ2080) -- 2.2 - Material resistance under light irradiation -- 3 - Micro-optical elements and components -- 3.1 - Miniature standard refractive optical elements -- 3.2 - Singular micro-optics -- 3.3 - Multifunctional and integrated optical components -- 4 - Toward GRIN micro-optics -- 4.1 - The need of control over the refractive index -- 4.2 - m-Raman measuring methodology -- 4.3 - Spatially selective modulation of refractive index by tuning DLW parameters -- 5 - Conclusions -- Acknowledgments -- References -- Chapter 12.2 - Remotely driven micromachines produced by two-photon microfabrication -- 1 - Introduction -- 2 - Fabrication processes of metallized micromachines -- 3 - Fabrication of copper-coated micromachines -- 3.1 - Preparation of acrylic resin. , 3.2 - Fabrication of 3D polymeric microstructures by two-photon microfabrication. , English
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    almahu_9949725449802882
    Umfang: 1 online resource (264 pages) : , illustrations (chiefly color)
    ISBN: 0-323-67503-4
    Anmerkung: Front Cover -- 3D Printing: Applications in Medicine and Surgery -- 3D Printing: Applications in Medicine and Surgery -- Copyright -- Contents -- Contributors -- 1 - Introduction -- Artificial intelligence in medical imaging -- Augmented reality in surgical guidance -- Additive manufacturing on presurgical planning -- References -- 2 - 3D printing and nanotechnology -- Introduction to additive manufacturing technologies and rapid prototyping -- Roll-to-roll and sheet-to-sheet 2D AM -- 3D AM -- Introduction to nanotechnology and applications -- Nanoparticles -- Nanotechnology -- 3D printing and nanotechnology -- 3D printing and nanotechnology toward biomedical applications: recent trends and challenges -- Future perspectives: advancements beyond the state of the art -- Impact of the combined 3D printing and nanotechnology in biomedical and other applications -- Improvement of the efficiency, quality, and reliability of the products -- Better use of raw materials and resources with reduced environmental impact and to lower cost -- Summary and conclusions -- References -- 3 - Three-dimensional bioprinting in medical surgery -- Introduction: 3D bioprinting technology in a few words and its evolution through the years -- Classification of 3D bioprinting methods -- Inkjet-based bioprinting -- Extrusion-based bioprinting -- Laser direct-write bioprinting -- Photocuring-based bioprinting -- Cell ball assembling bioprinting -- Bioinks in 3D bioprinting -- The bioinks used so far and their properties -- Synthetic polymers -- Natural biomaterials -- Agarose-based bioinks -- Alginate-based bioinks -- Collagen-based bioinks -- Gelatin bioinks -- Hyaluronic-based bioinks -- Cellulose-based bioinks -- Fibrin-based bioinks -- Silk-based bioinks -- Extracellular matrix-based bioinks -- Cell aggregates as bioinks -- Cells in 3D bioprinting: stem cells, expansion, and differentiation process -- The three-dimensional bioprinting process -- The prebioprinting stage -- The bioprinting stage -- The postbioprinting stage -- 3D bioprinting applications -- Tissue and organ bioprinting -- Clinical applications of bioprinted tissues and organs -- Conclusion and future perspectives -- References -- 4 - 3D printing and virtual and augmented reality in medicine and surgery: tackling the content development barrier ... -- Introduction -- 3D printing in surgery -- 3DP technology -- SLA apparatus -- Polyjet printing -- Multijet printing -- Digital light processing -- Direct metal laser sintering -- Selective sintering laser -- Color-jet printing -- Modeling of fused deposition -- Surgical applications for 3DP -- Preoperational training -- Intraoperative navigation -- Education and training -- Patient therapy -- Simulation of surgery -- Production of anatomical phantoms -- Surgical equipment -- Intangible immersive media in medical/surgical training and education -- Implementing a standardized pipeline for MR medical spaces -- Storyboarding the educational resource -- Development methodology -- Description of the final application and its presentation -- Proposing a co-creative digital content development pipeline -- Preparation and planning stage -- Co-creation stage -- Technical facilitation stage -- Prototyping stage -- Components for implementing the pipeline -- A ubiquitous use case -- Linking medical data repositories with the user experience -- A semantically annotated visual data structures -- Conclusions -- References -- 5 - 3D printing and pancreatic surgery -- Introduction -- Anatomy -- Development of pancreatic surgery -- Technical considerations in pancreatic surgery -- Training in pancreatic surgery -- Pancreatic surgery beyond conventional imaging -- 3D models in pancreatic surgery -- 3D printing as means of surgical training -- 3D printing technology for pancreatic surgery -- Studies and experience -- Future directions -- References -- 6 - Three-dimensional printing and hepatobiliary surgery -- Introduction: the introduction of three-dimensional printing in liver surgery -- The clinical use of the 3D-printed liver models in hepatic surgeries -- 3D-printed liver models as educational and training tools in surgery -- 3D-printed models as useful tools for patient and family counseling before the surgical operation -- Limitations of 3D printing technology in hepatic surgeries -- Conclusion: 3D printing applications in surgery is a revolution in the medical field -- References -- 7 - 3D printing in gynecology and obstetrics -- Introduction -- 3D printer types -- Clinical application of 3D printing in gynecology -- Clinical application of 3D printing in obstetrics -- The use of 3D printing for doctor's education -- Conclusion -- References -- Further reading -- 8 - 3D printing in neurosurgery -- Introduction -- Vascular neurosurgery -- A new frontier in preoperative planning and surgical training -- Surgical planning -- Endovascular applications -- Surgical training -- Neurooncology -- Surgical planning -- Neurosurgical training -- Application in radiotherapy -- Limitations -- Spine -- From simple spine models to surgical planning -- Prototyping for spinal operations -- Novel applications -- Anatomy, education, and prototyping in general neurosurgery -- Central nervous system anatomy and education -- Prototyping of materials and tools -- Patient counseling -- Conclusions -- References -- 9 - 3D printing in dentistry with emphasis on prosthetic rehabilitation and regenerative approaches -- Introduction -- Oral surgery -- Prosthodontics -- Fixed prosthodontics -- Interim prosthesis -- Ceramics -- Removable prosthodontics -- Complete dentures -- Removable partial dentures -- Maxillofacial prosthodontics -- Orthodontics -- Endodontics -- Periodontics -- Temporomandibular joint -- Stabilization splint -- 3D printing in TMJ replacement -- 3D printing in TMJ tissue engineering -- References -- 10 - Three-dimensional printing in plastic and reconstructive surgery -- Introduction -- Three-dimensional printing technologies -- Three-dimensional printing technologies for preoperative planning in plastic surgery -- Three-dimensional printing technologies for education and training -- Three-dimensional printing in head and neck reconstruction -- Three-dimensional printing in breast surgery -- Three-dimensional printing in reconstructive surgery of the extremities -- Bioprinting-tissue engineering -- References -- 11 - Three-dimensional printing in colorectal surgery -- Introduction -- Colorectal surgery -- Preoperative planning in rectal cancer -- Preoperative planning in total mesocolic excision for right colon cancer -- 3D printing in colorectal metastatic disease -- Sacral neuromulation: 3D printed guidance for electrode implantation -- Anal fistula surgery -- Lateral pelvic lymph node dissection using a 3D printed pelvic model for education -- Conclusion -- References -- Index -- Back Cover.
    Weitere Ausg.: ISBN 978-0-323-66193-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949628383702882
    Umfang: 1 online resource (254 pages)
    Ausgabe: First edition.
    ISBN: 0-323-99811-9
    Serie: Micro and Nano Technologies Series
    Anmerkung: Intro -- Nanoscale Memristor Device and Circuits Design -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Memristor and spintronics as key technologies for upcoming computing resources -- 1.1. End of Moores law -- 1.2. Life beyond Moores law: Multifunctional devices -- 1.2.1. Features, strengths, and properties of multifunctional devices -- 1.2.2. Components and devices -- 1.2.2.1. Memristors -- 1.2.2.2. Memristor-based neuromorphic computing -- 1.2.2.3. Spintronics -- 1.2.2.4. Spintronics-based neuromorphic computing -- 1.3. Materials for memristors and spintronics -- 1.3.1. Materials for memristors -- 1.3.2. Materials for spintronics -- 1.4. Future prospects based on memristors and spintronics -- 1.5. Challenges -- 1.6. Summary -- References -- Chapter 2: Design and investigation of various memristor models for neuromorphic applications -- 2.1. Introduction -- 2.2. Literature review -- 2.2.1. Nonlinear ionic drift model (Biolek model) -- 2.2.2. Simmons TB (tunnel barrier) model -- 2.2.3. Neuron biological model -- 2.2.4. Neuron classical model -- 2.2.5. Training algorithm flow diagram of Memristive perceptron -- 2.2.5.1. The algorithm of the training can be shown as steps, as follows: -- 2.2.5.2. Training procedure algorithm -- 2.2.5.3. Finalize values -- 2.2.6. Wide range of possible future memristor applications -- 2.2.7. Neuromorphic applications of memristors -- 2.2.7.1. Mathematics and physics-inspired circuits -- 2.2.7.2. Biological neuromorphic inspired course -- 2.3. Future work -- 2.4. Conclusion -- References -- Chapter 3: Memristor-based devices for hardware security applications -- Summary -- 3.1. Introduction -- 3.2. An overview of hardware security -- 3.3. Issues with counterfeited ICs -- 3.3.1. Physical unclonable functions (PUFs): A solution for counterfeited ICs. , 3.4. Nanoelectronic devices and their characteristics -- 3.5. Memristors -- 3.5.1. Theory -- 3.5.2. Device structure -- 3.5.3. Operation -- 3.5.4. Derivation of memristance -- 3.5.5. Write time -- 3.5.6. Basic characteristics of memristors -- 3.6. Prevention of side-channel attacks using memristors -- 3.7. Memristor-based physical unclonable functions (MemPUFs) -- 3.7.1. Architecture of MemPUFs -- 3.7.2. Operation -- 3.7.3. Security analysis -- 3.7.4. CMOS-based PUFs -- 3.7.5. Advantages over CMOS/CMOS equivalent PUFs -- 3.8. Memristor-based public physical unclonable functions (MemPPUFs) -- 3.9. Architecture of MemPPUFs -- 3.9.1. Operation -- 3.9.2. Security analysis -- 3.9.3. CMOS-based PPUFs -- 3.9.4. Advantages over CMOS-based PPUFs -- 3.10. Memristor-based tamper detection circuits (MemTDCs) -- 3.11. Architecture -- 3.11.1. Operation -- 3.11.2. Security analysis -- 3.11.3. CMOS-based tamper detection circuits -- 3.11.4. Advantages over CMOS-based tamper detection circuits -- 3.12. Memristor-based random bit generators (MemRBGs) -- 3.12.1. Architecture -- 3.12.2. Operation -- 3.12.3. Security analysis -- 3.12.4. CMOS-based random bit generators (CMOS-RBGs) -- 3.12.5. Advantages over CMOS-RBGs -- 3.13. Conclusion -- References -- Further reading -- Chapter 4: Novel memristive physical unclonable function -- 4.1. Introduction -- 4.2. Background -- 4.2.1. Memristor behavior -- 4.2.2. Physical unclonable function -- 4.3. A highly versatile architecture for replications and encoding/decoding -- 4.3.1. Proposed architecture -- 4.4. Proposed PUF architecture -- 4.4.1. Memristive nonlinear encoder (MNE) -- 4.4.2. Nonlinear digital-to-analog conversion -- 4.4.2.1. Memristive reverse decoder -- 4.4.2.2. Memristive chaotic decoder -- 4.4.3. Putting it all together -- 4.5. Results and discussions -- 4.6. Summary -- References. , Chapter 5: Memristor crossbar-based learning method for ex situ training in neural networks -- 5.1. Introduction -- 5.2. Background -- 5.2.1. Memristor behavior as synapse -- 5.2.2. Learning algorithms -- 5.2.2.1. Perceptron learning -- 5.2.2.2. Backpropagation learning algorithm -- 5.2.3. Training methods -- 5.2.3.1. Ex situ method -- 5.2.3.2. In situ method -- 5.3. Memristor-based neural network circuit design and learning -- 5.3.1. Neuron circuit -- 5.3.2. Modified learning method for ex situ training -- 5.3.3. Experimental setup -- 5.4. Memristor-based neural network implementation and results -- 5.4.1. Single-layer network -- 5.4.1.1. Four bit linear function -- 5.4.1.2. Pattern classifier -- 5.4.2. Multilayer crossbar network implementation -- 5.4.2.1. Two-layer network -- 5.4.2.2. Three-layer network simulation -- 5.5. Summary -- References -- Chapter 6: Design and simulation of low-power CMOS SRAM cells -- 6.1. Introduction -- 6.2. Conventional 6T SRAM cell -- 6.3. SRAM operations -- 6.3.1. Write operation -- 6.3.2. Read operation -- 6.3.3. Hold operation -- 6.4. Performance parameters -- 6.4.1. Static noise margin -- 6.4.2. Power consumption -- 6.4.3. Cell area -- 6.4.4. SRAM delay -- 6.5. Different types of leakage currents in SRAM -- 6.5.1. Subthreshold leakage current -- 6.5.2. Gate leakage -- 6.5.3. Junction tunneling leakage -- 6.6. Performance analysis of 45nm CMOS-based SRAM cell -- 6.6.1. Power dissipation and leakage current -- 6.6.2. Calculation of static noise margin -- 6.6.3. Subthreshold leakage current -- 6.7. SRAM cell with different transistor topologies -- 6.7.1. 7T SRAM cell -- 6.7.2. 8T SRAM cell -- 6.7.3. 9T SRAM cell -- 6.7.4. 10T SRAM cell -- 6.7.5. 12T SRAM cell -- 6.8. Results analysis of SRAM cell for different transistor topologies -- 6.9. Conclusion -- References. , Chapter 7: Nanoscale memristive devices: Threats and solutions -- 7.1 Introduction -- 7.2 Preliminaries -- 7.2.1 Memristor -- 7.2.2 ReRAM -- 7.2.3 STT-RAM -- 7.3 Memristor reliability challenges and solutions -- 7.3.1 Memristor read/write error -- 7.3.1.1 Read error mitigation -- 7.3.1.2 Write error mitigation -- 7.3.2 Soft error -- 7.3.2.1 Soft error preliminaries -- 7.3.2.2 State-of-the-art methods for ReRAM soft error mitigation -- 7.3.2.3 State-of-the-art methods for STT-RAM soft error mitigation -- 7.4 Memristor future direction: Memristor as logic -- 7.4.1 Logic-in-memory circuits based on STT-RAM -- 7.4.1.1 Multioutput and high-performance adder based on STT-RAM -- 7.4.1.2 Detailed design of synchronous 8-bit adder based on STT-RAM -- 7.4.2 Logic-in-memory circuits based on ReRAM -- 7.4.2.1 Multiplexer and Kogge-Stone adder using 1S1R ReRAM crossbar arrays -- 7.4.2.2 Stateful N-bit full adder circuit with Memristive switches -- 7.5 Summary -- References -- Chapter 8: Design of low-power SAR ADCs for biomedical applications -- 8.1. Introduction -- 8.2. Component considerations for low-power SAR ADCs -- 8.2.1. Analog-to-digital converter -- 8.2.2. SAR-ADC architecture -- 8.3. Existing SAR-ADC architectures -- 8.4. Discussion -- 8.5. Conclusion -- References -- Chapter 9: Techniques for crossbar array read operation* -- 9.1. Introduction -- 9.2. Improved crossbar array model -- 9.3. Modeling crossbar array read schemes -- 9.3.1. Floating wordlines and floating bitlines -- 9.3.2. Floating wordlines and grounded bitlines -- 9.3.3. Grounded wordlines and floating bitlines -- 9.3.4. Grounded wordlines and grounded bitlines -- 9.4. Effects of sneak path on crossbar array read schemes -- 9.5. Multiple cell read in crossbar arrays -- 9.5.1. Multiple cell read with similar data -- 9.5.2. Multiple cell read with nonsimilar data -- 9.6. Conclusions. , References -- Chapter 10: Memristor materials, fabrication, and sensing applications -- 10.1. Introduction of memristors -- 10.2. Previous related work -- 10.2.1. What is a memristor? -- 10.2.2. Types of memristors -- 10.2.3. Different materials used for memristors -- 10.2.3.1. Memristive properties in various materials -- 10.3. Various structures of memristors -- 10.3.1. Lateral structure memristor -- 10.3.2. Vertical structure memristor -- 10.3.3. Heterojunction memristor -- 10.4. Applications of memristors -- 10.4.1. Sensor applications -- 10.4.2. Gas sensor -- 10.4.3. Biosensor -- 10.4.4. Neuromorphic computing -- 10.5. Memristor fabrication techniques -- 10.5.1. Crossbar electrode fabrication -- 10.5.2. Ink-jet technique -- 10.5.3. Aerosol jet technique -- 10.5.4. Electrohydrodynamic technique -- 10.5.5. Active layer fabrication -- 10.5.6. Spin coating technique -- 10.5.7. Electrostatic spray technique -- 10.6. Summary -- References -- Index.
    Weitere Ausg.: Print version: Raj, Balwinder Nanoscale Memristor Device and Circuits Design San Diego : Elsevier,c2023 ISBN 9780323907934
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz