Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Keywords
Access
  • 1
    Online Resource
    Online Resource
    Oxford, England :Butterworth-Heinemann,
    UID:
    almahu_9948025785402882
    Format: 1 online resource (320 p.)
    Edition: 1st edition
    ISBN: 0-08-100058-8
    Content: Essentials of Vehicle Dynamics explains the essential mathematical basis of vehicle dynamics in a concise and clear way, providing engineers and students with the qualitative understanding of vehicle handling performance needed to underpin chassis-related research and development. Without a sound understanding of the mathematical tools and principles underlying the complex models in vehicle dynamics, engineers can end up with errors in their analyses and assumptions, leading to costly mistakes in design and virtual prototyping activities. Author Joop P. Pauwelussen looks to rectify this by d
    Note: Description based upon print version of record. , Front Cover; Essentials of Vehicle Dynamics; Copyright Page; Dedication; Contents; Preface; 1 Introduction; 2 Fundamentals of Tire Behavior; 2.1 Tire Input and Output Quantities; 2.2 Free Rolling Tire; 2.3 Rolling Resistance; 2.3.1 Braking/Driving Conditions; 2.3.2 Parasitary Forces: Toe and Camber; 2.3.3 Temperature; 2.3.4 Forward Speed; 2.3.5 Inflation Pressure; 2.3.6 Truck Tires Versus Passenger Car Tires; 2.3.7 Radial Versus Bias-Ply Tires; 2.3.8 Other Effects; 2.4 The Tire Under Braking and Driving Conditions; 2.4.1 Braking Behavior Explained; 2.4.2 Modeling Longitudinal Tire Behavior , 2.5 The Tire Under Cornering Conditions2.5.1 Cornering Behavior Explained; 2.5.2 Modeling Lateral Tire Behavior; 2.6 Combined Cornering and Braking/Driving; 2.6.1 Combined Slip; 2.6.2 Modeling Tire Behavior for Combined Slip; 2.6.3 Approximations in case of Combined Slip; 2.7 Physical Tire Models; 2.7.1 The Brush Model; 2.7.2 The Brush-String Model; 3 Nonsteady-State Tire Behavior; 3.1 Tire Transient Behavior; 3.1.1 The Tire Transient Model; 3.1.2 Applications of the Tire Transient Model; Shimmy of A Trailing Wheel; Single Wheel Vehicle Under Repetitive Braking , 3.2 Dynamic Tire Response to Road Disturbances3.2.1 Introduction to the Rigid Ring Tire Model; 3.2.2 Enveloping Properties of Tires to Road Disturbances; 3.2.3 Dynamic Response to Road Disturbances; 4 Kinematic Steering; 4.1 Axis Systems and Notations; 4.2 Ackermann Steering; 4.3 The Articulated Vehicle; 5 Vehicle Handling Performance; 5.1 Criteria for Good Handling; 5.1.1 ISO 4138: Steady-State Circular Test; 5.1.2 ISO 7401: Lateral Transient Response Test; 5.2 Single-Track Vehicle Modeling; 5.2.1 The Single-Track Model; Remarks Regarding Forces Acting on the Vehicle , 5.2.2 Effect of Body Roll and Lateral Load TransferContact Forces According to Genta and Morello; Contact Forces According to Kiencke and Nielsen; 5.2.3 Alignment and Compliance Effects; 5.2.4 Effect of Combined Slip; 5.3 Steady-State Analysis; 5.3.1 Steady-State Solutions; Remark; 5.3.2 Understeer and Oversteer; Definition 1; Definition 2; Definition 3; Definition 4; 5.3.3 Neutral Steer Point; 5.4 Nonsteady-State Analysis; 5.4.1 Yaw Stability; Ad (i); Ad (ii); Ad (iii); 5.4.2 Frequency Response; 5.5 Graphical Assessment Methods; 5.5.1 Phase Plane Analysis; 5.5.2 Stability Diagram , 5.5.3 The Handling Diagram5.5.4 The MMM Diagram; 5.5.5 The g-g Diagram; 6 The Vehicle-Driver Interface; 6.1 Assessment of Vehicle-Driver Performance; The Inter-Beat-Interval; The Heart Rate Variability; Pupil Diameter and Endogenous Eye Blinks; Blood Pressure Variability; Skin Conduction Response; Facial Muscle Activity; 6.2 The Vehicle-Driver Interface, A System Approach; 6.2.1 Open-Loop and Closed-Loop Vehicle Behavior; 6.2.2 The McRuer Crossover Model; 6.3 Vehicle-Driver Longitudinal Performance; 6.3.1 Following a Single Vehicle; 6.3.2 Driver Model and Driver State Identification , 6.4 Vehicle-Driver Handling Performance , English
    Additional Edition: ISBN 1-322-26372-8
    Additional Edition: ISBN 0-08-100036-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam [u.a.] : Butterworth-Heinemann
    UID:
    b3kat_BV042527245
    Format: 1 Online-Ressource (320 p.)
    ISBN: 9780081000588 , 0081000588 , 9781322263724 , 1322263728 , 9780081000366 , 0081000367
    Note: Essentials of Vehicle Dynamics explains the essential mathematical basis of vehicle dynamics in a concise and clear way, providing engineers and students with the qualitative understanding of vehicle handling performance needed to underpin chassis-related research and development. Without a sound understanding of the mathematical tools and principles underlying the complex models in vehicle dynamics, engineers can end up with errors in their analyses and assumptions, leading to costly mistakes in design and virtual prototyping activities. Author Joop P. Pauwelussen looks to rectify this by d , Includes bibliographical references (pages 299-301) and index
    Language: English
    Keywords: Kraftfahrzeug ; Fahrdynamik
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford, England :Butterworth-Heinemann,
    UID:
    edocfu_9960074054602883
    Format: 1 online resource (320 p.)
    Edition: 1st edition
    ISBN: 0-08-100058-8
    Content: Essentials of Vehicle Dynamics explains the essential mathematical basis of vehicle dynamics in a concise and clear way, providing engineers and students with the qualitative understanding of vehicle handling performance needed to underpin chassis-related research and development. Without a sound understanding of the mathematical tools and principles underlying the complex models in vehicle dynamics, engineers can end up with errors in their analyses and assumptions, leading to costly mistakes in design and virtual prototyping activities. Author Joop P. Pauwelussen looks to rectify this by d
    Note: Description based upon print version of record. , Front Cover; Essentials of Vehicle Dynamics; Copyright Page; Dedication; Contents; Preface; 1 Introduction; 2 Fundamentals of Tire Behavior; 2.1 Tire Input and Output Quantities; 2.2 Free Rolling Tire; 2.3 Rolling Resistance; 2.3.1 Braking/Driving Conditions; 2.3.2 Parasitary Forces: Toe and Camber; 2.3.3 Temperature; 2.3.4 Forward Speed; 2.3.5 Inflation Pressure; 2.3.6 Truck Tires Versus Passenger Car Tires; 2.3.7 Radial Versus Bias-Ply Tires; 2.3.8 Other Effects; 2.4 The Tire Under Braking and Driving Conditions; 2.4.1 Braking Behavior Explained; 2.4.2 Modeling Longitudinal Tire Behavior , 2.5 The Tire Under Cornering Conditions2.5.1 Cornering Behavior Explained; 2.5.2 Modeling Lateral Tire Behavior; 2.6 Combined Cornering and Braking/Driving; 2.6.1 Combined Slip; 2.6.2 Modeling Tire Behavior for Combined Slip; 2.6.3 Approximations in case of Combined Slip; 2.7 Physical Tire Models; 2.7.1 The Brush Model; 2.7.2 The Brush-String Model; 3 Nonsteady-State Tire Behavior; 3.1 Tire Transient Behavior; 3.1.1 The Tire Transient Model; 3.1.2 Applications of the Tire Transient Model; Shimmy of A Trailing Wheel; Single Wheel Vehicle Under Repetitive Braking , 3.2 Dynamic Tire Response to Road Disturbances3.2.1 Introduction to the Rigid Ring Tire Model; 3.2.2 Enveloping Properties of Tires to Road Disturbances; 3.2.3 Dynamic Response to Road Disturbances; 4 Kinematic Steering; 4.1 Axis Systems and Notations; 4.2 Ackermann Steering; 4.3 The Articulated Vehicle; 5 Vehicle Handling Performance; 5.1 Criteria for Good Handling; 5.1.1 ISO 4138: Steady-State Circular Test; 5.1.2 ISO 7401: Lateral Transient Response Test; 5.2 Single-Track Vehicle Modeling; 5.2.1 The Single-Track Model; Remarks Regarding Forces Acting on the Vehicle , 5.2.2 Effect of Body Roll and Lateral Load TransferContact Forces According to Genta and Morello; Contact Forces According to Kiencke and Nielsen; 5.2.3 Alignment and Compliance Effects; 5.2.4 Effect of Combined Slip; 5.3 Steady-State Analysis; 5.3.1 Steady-State Solutions; Remark; 5.3.2 Understeer and Oversteer; Definition 1; Definition 2; Definition 3; Definition 4; 5.3.3 Neutral Steer Point; 5.4 Nonsteady-State Analysis; 5.4.1 Yaw Stability; Ad (i); Ad (ii); Ad (iii); 5.4.2 Frequency Response; 5.5 Graphical Assessment Methods; 5.5.1 Phase Plane Analysis; 5.5.2 Stability Diagram , 5.5.3 The Handling Diagram5.5.4 The MMM Diagram; 5.5.5 The g-g Diagram; 6 The Vehicle-Driver Interface; 6.1 Assessment of Vehicle-Driver Performance; The Inter-Beat-Interval; The Heart Rate Variability; Pupil Diameter and Endogenous Eye Blinks; Blood Pressure Variability; Skin Conduction Response; Facial Muscle Activity; 6.2 The Vehicle-Driver Interface, A System Approach; 6.2.1 Open-Loop and Closed-Loop Vehicle Behavior; 6.2.2 The McRuer Crossover Model; 6.3 Vehicle-Driver Longitudinal Performance; 6.3.1 Following a Single Vehicle; 6.3.2 Driver Model and Driver State Identification , 6.4 Vehicle-Driver Handling Performance , English
    Additional Edition: ISBN 1-322-26372-8
    Additional Edition: ISBN 0-08-100036-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford, England :Butterworth-Heinemann,
    UID:
    edoccha_9960074054602883
    Format: 1 online resource (320 p.)
    Edition: 1st edition
    ISBN: 0-08-100058-8
    Content: Essentials of Vehicle Dynamics explains the essential mathematical basis of vehicle dynamics in a concise and clear way, providing engineers and students with the qualitative understanding of vehicle handling performance needed to underpin chassis-related research and development. Without a sound understanding of the mathematical tools and principles underlying the complex models in vehicle dynamics, engineers can end up with errors in their analyses and assumptions, leading to costly mistakes in design and virtual prototyping activities. Author Joop P. Pauwelussen looks to rectify this by d
    Note: Description based upon print version of record. , Front Cover; Essentials of Vehicle Dynamics; Copyright Page; Dedication; Contents; Preface; 1 Introduction; 2 Fundamentals of Tire Behavior; 2.1 Tire Input and Output Quantities; 2.2 Free Rolling Tire; 2.3 Rolling Resistance; 2.3.1 Braking/Driving Conditions; 2.3.2 Parasitary Forces: Toe and Camber; 2.3.3 Temperature; 2.3.4 Forward Speed; 2.3.5 Inflation Pressure; 2.3.6 Truck Tires Versus Passenger Car Tires; 2.3.7 Radial Versus Bias-Ply Tires; 2.3.8 Other Effects; 2.4 The Tire Under Braking and Driving Conditions; 2.4.1 Braking Behavior Explained; 2.4.2 Modeling Longitudinal Tire Behavior , 2.5 The Tire Under Cornering Conditions2.5.1 Cornering Behavior Explained; 2.5.2 Modeling Lateral Tire Behavior; 2.6 Combined Cornering and Braking/Driving; 2.6.1 Combined Slip; 2.6.2 Modeling Tire Behavior for Combined Slip; 2.6.3 Approximations in case of Combined Slip; 2.7 Physical Tire Models; 2.7.1 The Brush Model; 2.7.2 The Brush-String Model; 3 Nonsteady-State Tire Behavior; 3.1 Tire Transient Behavior; 3.1.1 The Tire Transient Model; 3.1.2 Applications of the Tire Transient Model; Shimmy of A Trailing Wheel; Single Wheel Vehicle Under Repetitive Braking , 3.2 Dynamic Tire Response to Road Disturbances3.2.1 Introduction to the Rigid Ring Tire Model; 3.2.2 Enveloping Properties of Tires to Road Disturbances; 3.2.3 Dynamic Response to Road Disturbances; 4 Kinematic Steering; 4.1 Axis Systems and Notations; 4.2 Ackermann Steering; 4.3 The Articulated Vehicle; 5 Vehicle Handling Performance; 5.1 Criteria for Good Handling; 5.1.1 ISO 4138: Steady-State Circular Test; 5.1.2 ISO 7401: Lateral Transient Response Test; 5.2 Single-Track Vehicle Modeling; 5.2.1 The Single-Track Model; Remarks Regarding Forces Acting on the Vehicle , 5.2.2 Effect of Body Roll and Lateral Load TransferContact Forces According to Genta and Morello; Contact Forces According to Kiencke and Nielsen; 5.2.3 Alignment and Compliance Effects; 5.2.4 Effect of Combined Slip; 5.3 Steady-State Analysis; 5.3.1 Steady-State Solutions; Remark; 5.3.2 Understeer and Oversteer; Definition 1; Definition 2; Definition 3; Definition 4; 5.3.3 Neutral Steer Point; 5.4 Nonsteady-State Analysis; 5.4.1 Yaw Stability; Ad (i); Ad (ii); Ad (iii); 5.4.2 Frequency Response; 5.5 Graphical Assessment Methods; 5.5.1 Phase Plane Analysis; 5.5.2 Stability Diagram , 5.5.3 The Handling Diagram5.5.4 The MMM Diagram; 5.5.5 The g-g Diagram; 6 The Vehicle-Driver Interface; 6.1 Assessment of Vehicle-Driver Performance; The Inter-Beat-Interval; The Heart Rate Variability; Pupil Diameter and Endogenous Eye Blinks; Blood Pressure Variability; Skin Conduction Response; Facial Muscle Activity; 6.2 The Vehicle-Driver Interface, A System Approach; 6.2.1 Open-Loop and Closed-Loop Vehicle Behavior; 6.2.2 The McRuer Crossover Model; 6.3 Vehicle-Driver Longitudinal Performance; 6.3.1 Following a Single Vehicle; 6.3.2 Driver Model and Driver State Identification , 6.4 Vehicle-Driver Handling Performance , English
    Additional Edition: ISBN 1-322-26372-8
    Additional Edition: ISBN 0-08-100036-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 0041000366?
Did you mean 0080300367?
Did you mean 0041000307?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages